Project description:Transcriptional profiling of mouse comparing in vitro-derived DC progenitors from control and Gata2 conditional knockout mice. Two-condition experiment, Control DCs vs. G2 Knockout DCs. Biological replicates: 4 control, 3 Gata2 knockout, independently grown and harvested. One replicate per array. Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germline GATA2 mutations induce GATA2 deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Linâ??Sca-1+Kit+ cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte-related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell fate specification toward the myeloid versus T lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation.
Project description:Transcriptional profiling of mouse comparing in vitro-derived DC progenitors from control and Gata2 conditional knockout mice. Two-condition experiment, Control DCs vs. G2 Knockout DCs. Biological replicates: 4 control, 3 Gata2 knockout, independently grown and harvested. One replicate per array.
Project description:The homeostatic control mechanism of dendritic cells (DCs), including pDCs, cDC1s and cDC2s, is not fully elucidated. Transcriptome profiling of wildtype and TRIM33 conditional knockout mice revealed a key role of TRIM33 in maintaining the homeostasis of all DC subsets.
Project description:To clarify the role of Gata2 in the development of Cbfb-MYH11 induced leukemia, we generated conditional Cbfb-MYH11 knockin mice with Gata2 heterozygous knockout. Leukemic cells with Gata2 heterozygous knockout gained higher number of genetic mutations and showed more aggressive phenotype in both primary and transplanted recipient mice. We compared gene expression profilings between Gata2+/+ and Gata2+/f leukemic cells with Cbfb-MYH11.
Project description:To characterize the genetic basis of hybrid male sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven ‘hotspots,’ seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL - but not cis eQTL - were substantially lower when mapping was restricted to a ‘fertile’ subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility.
Project description:In mice, two restricted DC progenitors, macrophage-dendritic progenitor (MDP) and common dendritic cell progenitor (CDP) demonstrate increasing commitment of DC lineage as they sequentially lose granulocyte and monocyte potential respectively. Identifying these progenitors has enabled understanding of the role of DCs and monocytes in immunity and tolerance in mice. In humans, however, restricted monocyte and DC progenitors remain unknown. Progress in studying human DC development has been hampered by lack of an in vitro culture system that recapitulates in vivo DC hematopoiesis. Here we report a culture system that supports development of CD34+ hematopoietic stem cell progenitors into the three major human DC subsets, monocytes, granulocytes, NK and B cells. Using this culture system we defined the pathway for human DC development, and revealed the sequential origin of human DCs from increasingly restricted progenitors: a granulocyte-monocyte-DC progenitor (hGMDP) that develops into a monocyte-DC progenitor (hMDP) that develops into monocytes and a common DC progenitor (hCDP) that is restricted to produce the three major DC subsets. The phenotype of the DC progenitors partially overlaps with granulocyte monocyte progenitors (GMPs). These progenitors reside in human cord blood and bone marrow but not in the blood or lymphoid tissues in the steady state. We performed whole transcriptome expression analysis on monocytes and subsets of dendritic cells i.e. CD1c+ DCs, CD141+ DCs and CD303+ pDCs isolated from blood or differentiated in culture from cord blood CD34+ cells in presence of MS5 stromal cells and Flt3l, GM-CSF and SCF cytokines.