Project description:TET1/2/3 are methylcytosine dioxygenases regulating cytosine hydroxymethylation in the genome. Tet1 and Tet2 are abundantly expressed in HSC/HPCs and implicated in the pathogenesis of hematological malignancies. Tet2-deletion in mice causes myeloid malignancies, while Tet1-null mice develop B-cell lymphoma after an extended period of latency. Interestingly, TET1 and TET2 were often concomitantly down-regulated in acute B-lymphocytic leukemia. Here, we investigated the overlapping and non-redundant functions of Tet1/Tet2 in HSC maintenance and development of hematological malignancies using Tet1/2 double knockout (DKO) mice. DKO and Tet2-/- HSC/HPCs had overlapping and unique 5hmC and 5mC profiles and behaved differently. DKO mice exhibited strikingly decreased incidence and delayed onset of myeloid malignancies compared to Tet2-/- mice and in contrast developed lethal B-cell malignancies. Transcriptome analysis of DKO tumors revealed expression changes in many genes dysregulated in human B-cell malignancies, such as LMO2, BCL6 and MYC. These results highlight the critical roles of TET1 or TET2 individually and their cross-talks in the pathogenesis of hematological malignancies. Given the role of Tet proteins in 5mC oxidation, we employed a previously established chemical labeling and affinity purification method coupled with high-throughput sequencing (hMe-Seal) to profile the genome-wide distribution of 5hmC, as well as methylated DNA immunoprecipitation (MeDIP) coupled with high-throughput sequencing (MeDIP-seq) to profile 5mC using BM LK cells purified from young WT, Tet2-/- and DKO mice (6-10 wks old).
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:This study uses whole methylome sequencing to characterize the methylomes of mouse embryonic fibroblasts (MEF's). Two conditions were analyzed, MEF cells with intact TET1/TET2 enzymes (WT) and MEF cells with TET1/TET2 knocked out (DKO). Our results identify sets of differentially methylated genes which are correlated with TET1/TET2 induced expression changes of the corresponding genes. Whole methylome analysis of M. musculus MEF cells. Two conditions were sequenced and analyzed, the first is wild type (WT), the second (DKO) corresponds to knock-out of TET1 and TET2 enzymes.
Project description:ATAC-seq of pre-proB, proB and preB populations from Ergfl/fl bone marrow, pre-proB cell population from Rag1CreT/+;ErgΔ/Δ bone marrow, and pre-proB, proB and preB populations from from Rag1CreT/+;ErgΔ/Δ;IgHVH10tar bone marrow.
Project description:To understand the mechanisms through which JunB regulates Tregs-mediated immune regulation, we examined the global gene expression profiles in the JunB WT and KO Tregs by performing RNA sequencing (RNA-seq) analysis.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:ATAC-seq profiling of Nfat5 KO and wild type macrophages derived from bone marrow (primary cells), treated or not with Lipopolysaccharide (LPS).
Project description:ATAC-seq was performed, mapped, and analyzed as previously described (PMID: 34446717: \\"ATAC-seq was performed on 50,000 cells per replicate as described in Buenrostro et al. (with modifications based on Corces et al.), on EpiSCs and PSM-differentiated cell populations at desired time-points. Libraries were generated using the Ad1_noMX and Ad2.1–2.16 barcoded primers64 and amplified for 10 total PCR cycles. Libraries were purified with AMPure XP beads to remove contaminating primer dimers and fragments >1,000 bp. Library quality was assessed using the Fragment analyzer and quantitated by Qubit assay. The libraries were sequenced with 50 bp paired-end reads on a Next-Seq 500 Sequencer (Illumina) at the DanStem Genomics Platform (University of Copenhagen, Copenhagen, Denmark).\\"). For all conditions, two biological replicate samples were collected from independent experiments. Library quality was assessed using the Fragment Analyzer and quantitated by Qubit assay. The libraries were sequenced with 50 bp paired-end reads on a NextSeq 500 Sequencer (Illumina) at the DanStem/reNEW Genomics Platform (University of Copenhagen, Copenhagen, Denmark). Prediction of cis-regulatory elements (CREs) and gene annotation was done using rGREAT (v4.0.4) [PMID: 20436461],[PMID: 36040971] or HOMER (v.4.7)[PMID: 20513432]