Project description:Ablative RT results in increased expression of CCL2 within the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) and also increased recruitment of CD45+CD11b+Ly6Chi inflammatory monocytes/macrophages. This increase in CCL2 expression and recruitment of inflammatory monocytes/macrophages is a mechanism of resistance to the anti-tumor effects of ablative radiotherapy (RT). We used microarrays to study changes in gene expression patterns of inflammatory monocytes/macrophages sorted from the tumor microenvironment after ablative RT in a subcutenous model of pancreatic adenocarcinoma. From this, we identified 8 genes with an absolute fold change of expression equal to or greater than 2 with a false discovery rate equal to or less than 25 %.
Project description:Ablative RT results in increased expression of CCL2 within the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) and also increased recruitment of CD45+CD11b+Ly6Chi inflammatory monocytes/macrophages. This increase in CCL2 expression and recruitment of inflammatory monocytes/macrophages is a mechanism of resistance to the anti-tumor effects of ablative radiotherapy (RT). We used microarrays to study changes in gene expression patterns of inflammatory monocytes/macrophages sorted from the tumor microenvironment after ablative RT in a subcutenous model of pancreatic adenocarcinoma. From this, we identified 8 genes with an absolute fold change of expression equal to or greater than 2 with a false discovery rate equal to or less than 25 %. A pancreatic cancer tumor cell line derived from spontaneously arising tumors in KrasLSL-G12D/+, Trp53LSL-R172H/+, Pdx1-Cre (KPC) mice was subcutaneously implanted into 8 week old female C57BL/6 and allowed to grow for 14 days. After 14 days, 4 mice received 20 Gy of radiation, and 4 mice received a sham treatment. One day post treatment, tumors were harvested, and inflammatory monocytes/macrophages were isolated using flow sorting based on a surface expression phenotype of CD45+ CD11b+ Ly6Chi. From this cell population, total RNA was extracted for creation of cDNA and hybridization on Affymetrix microarrays. From the microarrays, a set of genes associated with radiation treatment of PDAC was identified.
Project description:We found that BAP1 (BRCA1 Associated Protein-1) shows loss of heterozygosity in over 25% of pancreatic cancer patients and functions as tumor suppressor. Conditional deletion of Bap1 in murine pancreas led to genomic instability, accumulation of DNA damage, and an inflammatory response that evolved to pancreatitis with full penetrance. Concomitant expression of oncogenic KrasG12D led to malignant transformation and development of invasive and metastatic pancreatic cancer. At the molecular level, BAP1 maintains the integrity of the exocrine pancreas by regulating genomic stability and its loss confers sensitivity to radio- and platinum-based therapies.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:BackgroundCopy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.ResultsWe found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).ConclusionThe analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.
Project description:BackgroundLong terminal repeat (LTR) retrotransposons make up a large fraction of the typical mammalian genome. They comprise about 8% of the human genome and approximately 10% of the mouse genome. On account of their abundance, LTR retrotransposons are believed to hold major significance for genome structure and function. Recent advances in genome sequencing of a variety of model organisms has provided an unprecedented opportunity to evaluate better the diversity of LTR retrotransposons resident in eukaryotic genomes.ResultsUsing a new data-mining program, LTR_STRUC, in conjunction with conventional techniques, we have mined the GenBank mouse (Mus musculus) database and the more complete Ensembl mouse dataset for LTR retrotransposons. We report here that the M. musculus genome contains at least 21 separate families of LTR retrotransposons; 13 of these families are described here for the first time.ConclusionsAll families of mouse LTR retrotransposons are members of the gypsy-like superfamily of retroviral-like elements. Several different families of unrelated non-autonomous elements were identified, suggesting that the evolution of non-autonomy may be a common event. High sequence similarity between several LTR retrotransposons identified in this study and those found in distantly-related species suggests that horizontal transfer has been a significant factor in the evolution of mouse LTR retrotransposons.
Project description:House mice (Mus musculus) emit ultrasonic vocalizations (USVs), which are surprisingly complex and have features of bird song, but their functions are not well understood. Previous studies have reported mixed evidence on whether there are sex differences in USV emission, though vocalization rate or other features may depend upon whether potential receivers are of the same or opposite sex. We recorded the USVs of wild-derived adult house mice (F1 of wild-caught Mus musculus musculus), and we compared the vocalizations of males and females in response to a stimulus mouse of the same- or opposite-sex. To detect and quantify vocalizations, we used an algorithm that automatically detects USVs (Automatic Mouse Ultrasound Detector or A-MUD). We found high individual variation in USV emission rates (4 to 2083 elements/10 min trial) and a skewed distribution, with most mice (60%) emitting few (≤50) elements. We found no differences in the rates of calling between the sexes overall, but mice of both sexes emitted vocalizations at a higher rate and higher frequencies during opposite- compared to same-sex interactions. We also observed a trend toward higher amplitudes by males when presented with a male compared to a female stimulus. Our results suggest that mice modulate the rate and frequency of vocalizations depending upon the sex of potential receivers.
Project description:The recruitment of monocytes and their differentiation into immunosuppressive cells is associated with the negative outcome of non-conformal radiotherapy (RT). However, non-conformal RT is irrelevant in the clinic, and little is known about the role of monocytes following radiotherapy modes used in patients, such as conformal radiotherapy (CRT). Here, we investigated the acute immune infiltration post-CRT. Contrary to non-conformal RT approaches, we found that CRT induces a rapid and robust recruitment of monocytes to the tumor that minimally differentiate into tumor-associated macrophages (TAM) or dendritic cells (DC), but instead upregulate major histocompatibility complex II (MHCII) and costimulatory molecules. We establish that these large numbers of infiltrating monocytes are responsible for increasing type I interferon in the tumor microenvironment (TME), activation of CD8+ T cells and the reduction in tumor burden. Importantly, we demonstrate that rapid monocyte infiltration to the TME is hindered when RT inadvertently affects healthy tissues. Our results unravel a positive role of monocytes during clinically relevant modes of RT and demonstrate that limiting exposure of healthy tissues to radiation has a positive therapeutic effect on the overall immune response within the tumor.