Project description:Trancriptional comparison of Zbtb32-deficient and -sufficient NP-specific memory B cells at day 7 of recall response [memory B cells]
Project description:Memory B cell responses are more rapid and of greater magnitude than are primary antibody responses. The mechanisms by which these secondary responses are eventually attenuated remain unknown. We demonstrate that the transcription factor ZBTB32 limits the rapidity and duration of antibody recall responses. ZBTB32 is highly expressed by mouse and human memory B cells, but not by their naïve counterparts. Zbtb32-/- mice mount normal primary antibody responses to T-dependent antigens. However, Zbtb32-/- memory B cell-mediated recall responses occur more rapidly and persist longer than do control responses. Microarray analyses demonstrate that Zbtb32-/- secondary bone marrow plasma cells display elevated expression of genes that promote cell cycle progression and mitochondrial function relative to wild-type controls. BrdU labeling and adoptive transfer experiments confirm more rapid production and a cell-intrinsic survival advantage of Zbtb32-/- secondary plasma cells relative to wild-type counterparts. ZBTB32 is therefore a novel negative regulator of antibody recall responses. CD45.2 wild type and Zbtb32-/- splenocytes from NP-CGG-immune donors were transferred into CD45.1 recipients and challenged with NP-CGG. CD45.2 donor NP-specific memory B cells were isolated from the spleen 7 days later. 5-6 biological replicates of each genotype were performed.
Project description:Memory B cell responses are more rapid and of greater magnitude than are primary antibody responses. The mechanisms by which these secondary responses are eventually attenuated remain unknown. We demonstrate that the transcription factor ZBTB32 limits the rapidity and duration of antibody recall responses. ZBTB32 is highly expressed by mouse and human memory B cells, but not by their naïve counterparts. Zbtb32-/- mice mount normal primary antibody responses to T-dependent antigens. However, Zbtb32-/- memory B cell-mediated recall responses occur more rapidly and persist longer than do control responses. Microarray analyses demonstrate that Zbtb32-/- secondary bone marrow plasma cells display elevated expression of genes that promote cell cycle progression and mitochondrial function relative to wild-type controls. BrdU labeling and adoptive transfer experiments confirm more rapid production and a cell-intrinsic survival advantage of Zbtb32-/- secondary plasma cells relative to wild-type counterparts. ZBTB32 is therefore a novel negative regulator of antibody recall responses. CD45.2 wild type and Zbtb32-/- splenocytes from NP-CGG-immune donors were transferred into CD45.1 recipients and challenged with NP-CGG. CD45.2 donor NP-specific plasma cells B cells were isolated from the bone marrow 7 days later. 6 biological replicates of each genotype were performed.
Project description:Memory B cell responses are more rapid and of greater magnitude than are primary antibody responses. The mechanisms by which these secondary responses are eventually attenuated remain unknown. We demonstrate that the transcription factor ZBTB32 limits the rapidity and duration of antibody recall responses. ZBTB32 is highly expressed by mouse and human memory B cells, but not by their naïve counterparts. Zbtb32-/- mice mount normal primary antibody responses to T-dependent antigens. However, Zbtb32-/- memory B cell-mediated recall responses occur more rapidly and persist longer than do control responses. Microarray analyses demonstrate that Zbtb32-/- secondary bone marrow plasma cells display elevated expression of genes that promote cell cycle progression and mitochondrial function relative to wild-type controls. BrdU labeling and adoptive transfer experiments confirm more rapid production and a cell-intrinsic survival advantage of Zbtb32-/- secondary plasma cells relative to wild-type counterparts. ZBTB32 is therefore a novel negative regulator of antibody recall responses. Wild type and Zbtb32-/- resting polyclonal splenic memory B cells were purified by fluorescence activated cell sorting, RNA was extracted, and used for Affymetrix microarray analysis. 5 biological replicates of wild type and Zbtb32-/- cells were included for each cell type.
Project description:Memory B cell responses are more rapid and of greater magnitude than are primary antibody responses. The mechanisms by which these secondary responses are eventually attenuated remain unknown. We demonstrate that the transcription factor ZBTB32 limits the rapidity and duration of antibody recall responses. ZBTB32 is highly expressed by mouse and human memory B cells, but not by their naïve counterparts. Zbtb32-/- mice mount normal primary antibody responses to T-dependent antigens. However, Zbtb32-/- memory B cell-mediated recall responses occur more rapidly and persist longer than do control responses. Microarray analyses demonstrate that Zbtb32-/- secondary bone marrow plasma cells display elevated expression of genes that promote cell cycle progression and mitochondrial function relative to wild-type controls. BrdU labeling and adoptive transfer experiments confirm more rapid production and a cell-intrinsic survival advantage of Zbtb32-/- secondary plasma cells relative to wild-type counterparts. ZBTB32 is therefore a novel negative regulator of antibody recall responses.
Project description:Memory B cell responses are more rapid and of greater magnitude than are primary antibody responses. The mechanisms by which these secondary responses are eventually attenuated remain unknown. We demonstrate that the transcription factor ZBTB32 limits the rapidity and duration of antibody recall responses. ZBTB32 is highly expressed by mouse and human memory B cells, but not by their naïve counterparts. Zbtb32-/- mice mount normal primary antibody responses to T-dependent antigens. However, Zbtb32-/- memory B cell-mediated recall responses occur more rapidly and persist longer than do control responses. Microarray analyses demonstrate that Zbtb32-/- secondary bone marrow plasma cells display elevated expression of genes that promote cell cycle progression and mitochondrial function relative to wild-type controls. BrdU labeling and adoptive transfer experiments confirm more rapid production and a cell-intrinsic survival advantage of Zbtb32-/- secondary plasma cells relative to wild-type counterparts. ZBTB32 is therefore a novel negative regulator of antibody recall responses.
Project description:Memory B cell responses are more rapid and of greater magnitude than are primary antibody responses. The mechanisms by which these secondary responses are eventually attenuated remain unknown. We demonstrate that the transcription factor ZBTB32 limits the rapidity and duration of antibody recall responses. ZBTB32 is highly expressed by mouse and human memory B cells, but not by their naïve counterparts. Zbtb32-/- mice mount normal primary antibody responses to T-dependent antigens. However, Zbtb32-/- memory B cell-mediated recall responses occur more rapidly and persist longer than do control responses. Microarray analyses demonstrate that Zbtb32-/- secondary bone marrow plasma cells display elevated expression of genes that promote cell cycle progression and mitochondrial function relative to wild-type controls. BrdU labeling and adoptive transfer experiments confirm more rapid production and a cell-intrinsic survival advantage of Zbtb32-/- secondary plasma cells relative to wild-type counterparts. ZBTB32 is therefore a novel negative regulator of antibody recall responses.
Project description:Memory B cells play essential roles in the maintenance of long-term immunity and may be important in the pathogenesis of autoimmune disease, but how these cells are distinguished from their naïve precursors is poorly understood. To address this, it would be important to understand how gene expression differs between memory and naive B cells in order to elucidate memory-specific functions. Using model systems that help overcome the lack of murine memory-specific markers and the low frequency of antigen-specific memory and naïve cells, we undertook a global comparison of gene expression between memory B cells and their naive precursors. 1st generation screen: These data represent our first generation comparison of gene expression between murine naïve and memory splenic B cells. Naïve NP-binding splenic B cells were FACS purified from unimmunized mVh186.2 transgenic Balb/c mice. Memory B cells were generated by immunizing mVh186.2 transgenic Balb/c mice with 2 doses of NP-CGG in alum delivered i.p. 6 weeks apart. After a minimum of 12-weeks rest, NP-binding splenic B cells were isolated by FACS. Total RNA was extracted, cRNA synthesized and labeled and hybridized to Affymetrix mouse 430 2.0 chips. 2nd generation screen: These data represent our second generation comparison of gene expression between murine naïve and memory splenic B cells. Naïve NP-binding AA4.1neg splenic B cells were FACS purified from unimmunized mVh186.2 transgenic Jk KO Balb/c mice. Memory B cells were generated from these naive precursors after adoptive transfer into recipients that mount poor endogenous NP-responses. 12-weeks post i.p. immunization with NP-CGG in alum, NP-specific splenic memory B cells were isolated by FACS. Total RNA was extracted, cRNA synthesized and labeled and hybridized to Affymetrix mouse 430 2.0 chips. Memory/Naïve comparison data linked below as Supplementary files. Keywords: Cell type comparison