Project description:Background MicroRNA expression is frequently dysregulated in cancer and it could be used potentially as a disease classifier and a prognostic tool in cancer. It has been reported that the cancer associated specific microRNAs were stably detected in blood. The objective of this study was to discover a panel of circulating microRNAs as potential ER+/HER2- breast cancer biomarkers. Methods We compared levels of circulating microRNAs in blood samples from 11 ER+/HER2- advanced breast cancer patients with age-matched 5 control subjects by using microarray-based expression profiling. We validated the level of microRNAs by real-time quantitative polymerase cycle reaction (RT-qPCR) in 40 control subjects, 180 early breast cancer patients (EBC), and 52 metastatic breast cancer patients (MBC). Then, we assessed the association between the levels of microRNA and clinical outcomes of ER+/HER2- metastatic breast cancer. Background MicroRNA expression is frequently dysregulated in cancer and it could be used potentially as a disease classifier and a prognostic tool in cancer. It has been reported that the cancer associated specific microRNAs were stably detected in blood. The objective of this study was to discover a panel of circulating microRNAs as potential ER+/HER2- breast cancer biomarkers. Methods We compared levels of circulating microRNAs in blood samples from 11 ER+/HER2- advanced breast cancer patients with age-matched 5 control subjects by using microarray-based expression profiling. We validated the level of microRNAs by real-time quantitative polymerase cycle reaction (RT-qPCR) in 40 control subjects, 180 early breast cancer patients (EBC), and 52 metastatic breast cancer patients (MBC). Then, we assessed the association between the levels of microRNA and clinical outcomes of ER+/HER2- metastatic breast cancer. Controls: 5 cases; ER +/HER2- breast cancer patients : 11 cases
Project description:Background MicroRNA expression is frequently dysregulated in cancer and it could be used potentially as a disease classifier and a prognostic tool in cancer. It has been reported that the cancer associated specific microRNAs were stably detected in blood. The objective of this study was to discover a panel of circulating microRNAs as potential ER+/HER2- breast cancer biomarkers. Methods We compared levels of circulating microRNAs in blood samples from 11 ER+/HER2- advanced breast cancer patients with age-matched 5 control subjects by using microarray-based expression profiling. We validated the level of microRNAs by real-time quantitative polymerase cycle reaction (RT-qPCR) in 40 control subjects, 180 early breast cancer patients (EBC), and 52 metastatic breast cancer patients (MBC). Then, we assessed the association between the levels of microRNA and clinical outcomes of ER+/HER2- metastatic breast cancer. Background MicroRNA expression is frequently dysregulated in cancer and it could be used potentially as a disease classifier and a prognostic tool in cancer. It has been reported that the cancer associated specific microRNAs were stably detected in blood. The objective of this study was to discover a panel of circulating microRNAs as potential ER+/HER2- breast cancer biomarkers. Methods We compared levels of circulating microRNAs in blood samples from 11 ER+/HER2- advanced breast cancer patients with age-matched 5 control subjects by using microarray-based expression profiling. We validated the level of microRNAs by real-time quantitative polymerase cycle reaction (RT-qPCR) in 40 control subjects, 180 early breast cancer patients (EBC), and 52 metastatic breast cancer patients (MBC). Then, we assessed the association between the levels of microRNA and clinical outcomes of ER+/HER2- metastatic breast cancer.
Project description:Biomarkers of response are needed in breast cancer to stratify patients to appropriate therapies and avoid unnecessary toxicity. Peripheral blood gene expression and cell type abundance were used to identify biomarkers of response and recurrence in neoadjuvant chemotherapy treated breast cancer patients. Higher peripheral blood monocyte abundance after neoadjuvant chemotherapy was associated with improved prognosis in multiple independent cohorts of breast cancer patients.
Project description:To identify a set of methylation biomarkers capable of reliably distinguishing breast cancer patients from healthy controls, we performed DNA methylation profiling on germline DNA from peripheral blood samples for a predominantly Asian population comprising 256 ethnic Chinese breast cancer patients recruited from genetic testing clinics and 268 age- and ethnicity-matched non-cancer controls.
Project description:We sought to identify circulating microRNAs (miRNAs) from blood plasma that could be used as biomarkers to detect breast cancer existing in high-risk benign breast tumors. Plasma samples were collected from patients with early-stage breast cancer (CA), high- (HB), moderate- (MB), and no-risk (Be) benign tumors. The miRNAs we have identified have the potential to develop into a crucial blood-based screening tool to help monitor the development of breast cancer in benign breast tumors.
Project description:Breast Cancer is the cancer with most incidence and mortality in women. microRNAs are emerging as novel prognosis/diagnostic tools. Our aim was to identify a serum microRNA signature useful to predict cancer development. We focused on studying the expression levels of 30 microRNAs in the serum of 96 breast cancer patients versus 92 control individuals. Bioinformatic studies provide a microRNA signature, designated as a predictor, based upon the expression levels of 5 microRNAs. Then, we tested the predictor in a group of 60 randomly chosen women. Lastly, a proteomic study unveiled the over-expression and down-regulation of proteins differently expressed in the serum of breast cancer patients versus that of control individuals. Twenty-six microRNAs differentiate cancer tissue from healthy tissue and 16 microRNAs differentiate the serum of cancer patients from that of the control group. The tissue expression of miR-99a-5p, mir-497-5p, miR-362, and miR-1274, and the serum levels of miR-141 correlated with patient survival. Moreover, the predictor consisting of mir-125b-5p, miR-29c-3p, mir-16-5p, miR-1260, and miR-451a was able to differentiate breast cancer patients from controls. The predictor was validated in 20 new cases of breast cancer patients and tested in 60 volunteer women, assigning 11 out of 60 women to the cancer group. An association of low levels of mir-16-5p with a high content of CD44 protein in serum was found. Circulating microRNAs in serum can represent biomarkers for cancer prediction. Their clinical relevance and use of the predictor here described might be of potential importance for breast cancer prediction.
Project description:MicroRNA (miRNA/miR) miR526b and miR655 overexpressed tumor cell-free secretions promote breast cancer phenotypes in the tumor microenvironment (TME). However, the mechanisms of miRNA regulating TME have never been investigated. With mass spectrometry analysis of MCF7-miRNA-overexpressed versus miRNA-low MCF7-Mock tumor cell secretomes, we identified 34 novel secretory proteins coded by eight genes YWHAB, TXNDC12, MYL6B, SFN, FN1, PSMB6, PRDX4, and PEA15 those are differentially regulated. We used bioinformatic tools and systems biology approaches to identify these markers’ role in breast cancer. Gene ontology analysis showed that the top functions are related to apoptosis, oxidative stress, membrane transport, and motility, supporting miRNA-induced phenotypes. These secretory markers expression is high in breast tumors, and a strong positive correlation exists between upregulated markers’ mRNA expressions with miRNA cluster expression in luminal A breast tumors. Gene expression of secretome markers is higher in tumor tissues compared to normal samples, and immunohistochemistry data supported gene expression data. Moreover, both up and downregulated marker expressions are associated with breast cancer patient survival. miRNA regulates these marker protein expressions by targeting transcription factors of these genes. Premature miRNA (pri-miR526b and pri-miR655) are established breast cancer blood biomarkers. Here we report novel secretory markers upregulated by miR526b and miR655 (YWHAB, MYL6B, PSMB6, and PEA15) are significantly upregulated in breast cancer patients’ plasma, and are potential breast cancer biomarkers.
Project description:Introduction: microRNAs are promising candidate breast cancer biomarkers due to their cancer-specific expression profiles. However, efforts to develop circulating breast cancer biomarkers are challenged by the heterogeneity of microRNAs in the blood. To overcome this challenge, we aimed to develop a molecular profile of microRNAs specifically secreted from breast cancer cells. Our first step towards this direction relates to capturing and analyzing the contents of exosomes, which are small secretory vesicles that selectively encapsulate microRNAs indicative of their cell of origin. To our knowledge, circulating exosome microRNAs have not been well evaluated as biomarkers for breast cancer diagnosis or monitoring. Methods: Exosomes were collected from the conditioned media of human breast cancer cell lines, mouse plasma of patient-derived orthotopic xenograft models (PDX), and human plasma samples. Exosomes were verified by electron microscopy, nanoparticle tracking analysis, and western blot. Cellular and exosome microRNAs from breast cancer cell lines were profiled by next-generation small RNA sequencing. Plasma exosome microRNA expression was analyzed by qRT-PCR analysis. Results: Small RNA sequencing and qRT-PCR analysis showed that several microRNAs are selectively encapsulated or highly enriched in breast cancer exosomes. Importantly, the selectively enriched exosome microRNA, human miR-1246, was detected at significantly higher levels in exosomes isolated from PDX mouse plasma, indicating that tumor exosome microRNAs are released into the circulation and can serve as plasma biomarkers for breast cancer. This observation was extended to human plasma samples where miR-1246 and miR-21 were detected at significantly higher levels in the plasma exosomes of 16 breast cancer patients as compared to the plasma exosomes of healthy control subjects. Receiver Operating Characteristic (ROC) curve analysis indicated that the combination of plasma exosome miR-1246 and miR-21 levels is a better indicator of breast cancer than their individual levels. Conclusions: Our results demonstrate that certain microRNA species, such as miR-21 and miR-1246, are selectively enriched in human breast cancer exosomes and significantly elevated in the plasma of breast cancer patients. These findings indicate a potential new strategy to selectively analyze plasma breast cancer microRNAs indicative of the presence of breast cancer.
Project description:MicroRNAs (miRNAs) have been recently detected in the circulation of cancer patients, where they are associated with clinical parameters. Discovery profiling of circulating small RNAs has not been previously reported in breast cancer (BC), and was carried out in this study to identify blood-based small RNA markers of BC clinical outcome. The pre-treatment sera of 42 stage II–III locally advanced and inflammatory BC patients who received neoadjuvant chemotherapy (NCT) followed by surgical tumor resection were analyzed for marker identification by deep sequencing all circulating small RNAs.