Project description:Here, we investigate the genetic mechanisms that underlie thermal specialization of closely-related vibrios isolated from coastal water at the Beaufort Inlet (Beaufort, NC, USA). This location experiences large seasonal temperature fluctuations (annual range of ~20°C), and a clear seasonal shift in vibrio diversity has been observed (Yung et al. 2015). This previous study suggested that the mechanisms of thermal adaptation apparently differ based on evolutionary timescale: shifts in the temperature of maximal growth occur between deeply branching clades but the shape of the thermal performance curve changes on shorter time scales (Yung et al. 2015). The observed thermal specialization in vibrio populations over relatively short evolutionary time scales indicates that few genes or cellular processes may contribute to the differences in thermal performance between populations. In order to understand the molecular mechanisms that underlie adaptation to local thermal regimes in environmental vibrio populations, we employ genomic and transcriptomic approaches to examine transcriptomic changes that occur within strains grown at their thermal optima and under heat and cold stress. Moreover, we compare two closely-related strains with different laboratory thermal preferences to identify in situ evolutionary responses to different thermal environments in genome content and alleles as well as gene expression.
Project description:Vibrio species represent one of the most diverse genera of marine bacteria known for their ubiquitous presence in natural aquatic systems. Several members of this genus including Vibrio harveyi are receiving increasing attention lately because they are becoming a source of health problems, especially for some marine organisms widely used in sea food industry. To learn about adaptation changes triggered by V. harveyi during its long-term persistence at elevated temperatures, we studied adaptation of this marine bacterium in sea water microcosms at 30 oC that closely mimicks the upper limits of sea surface temperatures recorded around the globe.
Project description:Bacteria must adapt their proteome composition to optimize their growth and fitness after an environmental shift. For the lactic acid bacterium Lactococcus cremoris, the shift from galactose to glucose as the main carbon source is associated with large growth rate and physiological changes. This study used protein turnover to investigate the strategies underlying proteome-wide adaptation after a shift from galactose to glucose as the main carbon source for two closely related Lactococcus cremoris strains.
Project description:We used microarrays to investigate the transcriptome of 6 days old male flies exposed to either 15 or 25 C development at either constant or fluctuating temperatures. Further, we investigated gene expression at benign (20C) and high (35C) temperatures With global climate change temperature means and variability are expected to increase. Thus, exposures to elevated temperatures are expected to become an increasing challenge for terrestrial ectotherm populations. While evolutionary adaptation seems to be constrained or proceed at an insufficient pace, many populations are expected to rely on phenotypic plasticity (thermal acclimation) for coping with the predicted changes. However, the effects of fluctuating temperature on the molecular mechanisms and the implications for heat tolerance are not well understood. To understand and predict consequences of climate change it is important to investigate how different components of the thermal environment, including fluctuating thermal conditions, contribute to changes in thermal acclimation. In this study we investigated the impact of mean and diurnal fluctuation of temperature on heat tolerance in Drosophila melanogaster and on the underlying molecular mechanisms in adult male flies. Flies from two constant and two ecologically relevant fluctuating temperature regimes were tested for their critical thermal maxima (CTmax) and associated global gene expression profiles at benign and thermally stressful conditions. Both temperature parameters contributed independently to the thermal acclimation, with regard to heat tolerance as well as the global gene expression profile. Although the independent transcriptional effects caused by fluctuations were relatively small, they are likely to be essential for our understanding of thermal adaptation. Thus, high temperature acclimation ability might not be measured correctly and might even be underestimated at constant temperatures. Our data suggests that the particular mechanisms affected by thermal fluctuations are related to phototransduction and environmental sensing. Thus genes and pathways involved in those processes are likely to be of major importance in a future warmer and more fluctuating climate. Eight experimental groups were analyzed in triplicate, in total 24 Affymetrix GeneChip Drosophila Genome 2.0 Arrays