Project description:The nuclear phase of the gene expression pathway culminates in the export of mature mRNAs to the cytoplasm through nuclear pore complexes (NPCs). GANP (Germinal-centre Associated Nuclear Protein) promotes the transfer to NPCs of mRNAs bound to the transport factor NXF1. Here, we demonstrate that GANP, subunit of the TREX-2 mRNA export complex, promotes selective nuclear export of a specific subset of mRNAs whose transport depends on NXF1. Genome-wide gene expression profiling showed that half of the transcripts whose nuclear export was impaired following NXF1 depletion also showed reduced export when GANP was depleted. GANP-dependent transcripts were highly expressed, yet short-lived, and were highly enriched in those encoding central components of the gene expression machinery such as RNA synthesis and processing factors. After injection into Xenopus oocyte nuclei, representative GANP-dependent transcripts showed faster nuclear export kinetics than representative transcripts that were not influenced by GANP depletion. We propose that GANP promotes the nuclear export of specific classes of mRNAs that may facilitate rapid changes in gene expression. We used gene expression profiling to compare the abundance of cytoplasmic RNAs after GANP or NXF1 depletion
Project description:Eukaryotic cells have to prevent the export of unspliced pre-mRNAs until intron removal is completed to avoid the expression of aberrant and potentially harmful proteins. Only mature RNAs associate with the export receptor Mex67 (mammalian TAP) and enter the cytoplasm. The underlying nuclear quality control mechanisms are still unclear. Here we show that two shuttling SR-proteins Gbp2 and Hrb1 are key surveillance factors for the selective export of spliced mRNAs in yeast. Their absence leads to the significant leakage of unspliced pre-mRNAs into the cytoplasm. They bind to pre-mRNAs and the spliceosome during splicing, where they are necessary for the surveillance of splicing and the stable binding of the TRAMP-complex to the spliceosome-bound transcripts. Faulty transcripts are marked for their degradation at the nuclear exosome. On correct mRNAs the SR-proteins recruit Mex67 upon completion of splicing to allow a quality controlled nuclear export. Altogether, these data identify a role for shuttling SR-proteins in mRNA surveillance and nuclear mRNA quality control. 6 samples, i.e. 2 replicates per protein Gbp2, Hrb1 and Npl3
Project description:The nuclear phase of the gene expression pathway culminates in the export of mature mRNAs to the cytoplasm through nuclear pore complexes (NPCs). GANP (Germinal-centre Associated Nuclear Protein) promotes the transfer to NPCs of mRNAs bound to the transport factor NXF1. Here, we demonstrate that GANP, subunit of the TREX-2 mRNA export complex, promotes selective nuclear export of a specific subset of mRNAs whose transport depends on NXF1. Genome-wide gene expression profiling showed that half of the transcripts whose nuclear export was impaired following NXF1 depletion also showed reduced export when GANP was depleted. GANP-dependent transcripts were highly expressed, yet short-lived, and were highly enriched in those encoding central components of the gene expression machinery such as RNA synthesis and processing factors. After injection into Xenopus oocyte nuclei, representative GANP-dependent transcripts showed faster nuclear export kinetics than representative transcripts that were not influenced by GANP depletion. We propose that GANP promotes the nuclear export of specific classes of mRNAs that may facilitate rapid changes in gene expression.
Project description:Eukaryotic cells have to prevent the export of unspliced pre-mRNAs until intron removal is completed to avoid the expression of aberrant and potentially harmful proteins. Only mature RNAs associate with the export receptor Mex67 (mammalian TAP) and enter the cytoplasm. The underlying nuclear quality control mechanisms are still unclear. Here we show that two shuttling SR-proteins Gbp2 and Hrb1 are key surveillance factors for the selective export of spliced mRNAs in yeast. Their absence leads to the significant leakage of unspliced pre-mRNAs into the cytoplasm. They bind to pre-mRNAs and the spliceosome during splicing, where they are necessary for the surveillance of splicing and the stable binding of the TRAMP-complex to the spliceosome-bound transcripts. Faulty transcripts are marked for their degradation at the nuclear exosome. On correct mRNAs the SR-proteins recruit Mex67 upon completion of splicing to allow a quality controlled nuclear export. Altogether, these data identify a role for shuttling SR-proteins in mRNA surveillance and nuclear mRNA quality control.
Project description:Genome-wide mapping of decay factor-mRNA interactions in yeast identifies nutrient responsive transcripts as targets of the deadenylase Ccr4
Project description:The nuclear envelope serves as important mRNA surveillance system. In yeast and human, several control systems act in parallel to prevent nuclear export of unprocessed mRNAs. Trypanosomes lack homologues to most of the involved proteins and their nuclear mRNA metabolism is non-conventional exemplified by polycistronic transcription and mRNA processing by trans-splicing. We here visualised nuclear export in trypanosomes by probing large, endogenous mRNA by intramolecular multi-colour single molecule FISH (smFISH). In addition, unspliced mRNAs were visualised by co-probing two adjacent introns or intergenic regions. We found that the initation of nuclear export requires neither the completion of transcription nor trans-splicing. Nevertheless, the inhibition of trans-splicing blocked cytoplasmic transport of the of unspliced mRNAs and only a small fraction reached the nucleus-distant cytoplasm. Most of the unspliced transcripts remained at the nuclear periphery, within transport and in nuclear periphery granules (NPGs) localised at the cytoplasmic site of nuclear pores that resemble stress granules in composition. Our work shows that, in striking contrast to other eukaryotes, trypanosomes can start nuclear export while the mRNA is still transcribed, but unspliced transcripts remain ‘stuck’ in nuclear pores, probably awaiting processing or decay. Our data indicate that trypanosomes regulate the completion of nuclear export rather than the start.
Project description:PIWI-interacting RNAs (piRNAs) guide transposon silencing in animals. The 22-30nt piRNAs are processed in the cytoplasm from long non-coding RNAs. How piRNA precursors, which often lack RNA processing hallmarks of export-competent transcripts, achieve nuclear export is unknown. Here, we uncover the RNA export pathway specific for piRNA precursors in the Drosophila germline. This pathway requires Nxf3-Nxt1, a variant of the hetero-dimeric mRNA export receptor Nxf1-Nxt1. Nxf3 interacts with UAP56, a nuclear RNA helicase essential for mRNA export, and CG13741/Bootlegger, which recruits Nxf3-Nxt1 and UAP56 to heterochromatic piRNA source loci. Upon RNA cargo binding, Nxf3 achieves nuclear export via the exportin Crm1, and accumulates together with Bootlegger in peri-nuclear nuage, suggesting that after export, Nxf3-Bootlegger delivers precursor transcripts to the piRNA processing sites. Our findings indicate that the piRNA pathway bypasses nuclear RNA surveillance systems to achieve export of heterochromatic, unprocessed transcripts to the cytoplasm, a strategy also exploited by retroviruses.
Project description:PIWI-interacting RNAs (piRNAs), a class of small RNAs that guide transposon silencing in animals, are processed in the cytoplasm from RNA Polymerase II transcripts. How piRNA precursors, which often lack RNA maturation signatures and thereby violate quality control checkpoints, achieve nuclear export is unknown. Here, we uncover a germline-specific RNA export pathway in Drosophila, that escorts piRNA precursors from their heterochromatic origins to nuage, the cytoplasmic piRNA processing centres. This pathway connects canonical nuclear export factors—the RNA helicase UAP56, the NXF cofactor Nxt1/p15, and the exportin Crm1/Xpo1—with Nxf3, a variant of the mRNA exporter Nxf1/Tap. Nxf3 recruitment to nascent piRNA precursors occurs via the heterochromatin protein 1-variant Rhino and CG13741/Bootlegger, a new piRNA pathway factor, thereby making piRNA precursor export independent of RNA processing events. Thus, similar to retroviral hijacking of cellular export factors, piRNA precursor export evolved to bend canonical gene expression rules through bypassing nuclear RNA surveillance mechanisms.