Project description:Sperms being foreign to the female are to be promptly eliminated by the female local immune defense. However, avoiding the local immune defense sperm can be stored for lenthy period in the oviductal sperm reservoir. It is currently unknown whether oviductal sperm reservoirs changes their gene expression to tolerate the spermatozoa after mating or sperm free seminal plasma infusion. Therefore this was tested using Swedish Landrace pigs in this study using cDNA microarray. We used 12 sows seperated into three groups- either oestrus sows were inseminated with 50 ml BTS (control, n=4) or mated with boars (treatment 1, n=4) or inseminated with sperm-free seminal plasma (treatment 2, n=4). The utero-tubal junction was retrieved within 24 h of treatment by operation.
Project description:Sperms being foreign to the female are to be promptly eliminated by the female local immune defense. However, avoiding the local immune defense sperm can be stored for lenthy period in the oviductal sperm reservoir. It is currently unknown whether oviductal sperm reservoirs changes their gene expression to tolerate the spermatozoa after mating or sperm free seminal plasma infusion. Therefore this was tested using Swedish Landrace pigs in this study using cDNA microarray.
Project description:The seminal plasma (SP) is the liquid component of semen that facilitates sperm transport through the female genital tract. SP modulates the activity of the ovary, oviductal environment and uterine function during the periovulatory and early pregnancy period. Extracellular vesicles (EVs) secreted in the oviduct (oEVs) and uterus (uEVs) have been shown to influence the expression of endometrial genes that regulate fertilization and early embryo development. In some species, semen is composed of well-separated fractions that vary in concentration of spermatozoa and SP composition and volume. This study aimed to investigate the impact of different accumulative fractions of the porcine ejaculate (F1, composed of the sperm-rich fraction (SRF); F2, composed of F1 plus the intermediate fraction; F3, composed of F2 plus the post-SRF) on oEVs and uEVs protein cargo. Six days after the onset of estrus, we determined the oEVs and uEVs size and protein concentration in pregnant sows by artificial insemination (AI-sows) and in non-inseminated sows as control (C-sows). We also identified the main proteins in oEVs and uEVs, in AI-F1, AI-F2, AI-F3, and C-sows. Our results indicated that although the size of EVs is similar between AI- and C-sows, the protein concentration of both oEVs and uEVs was significantly lower in AI-sows (p < 0.05). Proteomic analysis identified 38 unique proteins in oEVs from AI-sows, mainly involved in protein stabilization, glycolytic and carbohydrate processes. The uEVs from AI-sows showed the presence of 43 unique proteins, including already-known fertility-related proteins (EZR, HSPAA901, PDS). We also demonstrated that the protein composition of oEVs and uEVs differed depending on the seminal fraction(s) inseminated (F1, F2, or F3). In conclusion, we have found a specific protein cargo in uterine and oviductal EVs depending on the type of semen fraction the sow was inseminated with, and these insemination with different seminal fractions results in the oviductal and uterine secretion of specific EVs proteins are closely associated with reproductive processes.
Project description:Transcriptional profiling of adult mouse liver tissue comparing offspring derived from sperm and seminal plasma of normal protein diet fed males (controls, NN), sperm and seminal plasma from males fed a low protein diet fed males (LL), sperm from normal protein fed males and seminal plasma from low protein fed males (NL) or sperm from low protein diet fed males and seminal plasma from normal protein diet males (NL). The first letter denotes the diet of the sperm donor and the second letter the diet of the seminal plasma donor. Three-condition experiment: NN vs. LL, NN vs. NL, NN vs. LN. Adult offspring liver tissue. Biological replicates: 7 control (NN), 9 LL, 7 NL and 7 LN. One replicate per array chip.
Project description:The seminal plasma contains large quantities of extracellular vesicles (EVs). However, the role of these EVs and their interactions with sperms are not clear. To identify the important molecules affecting sperm motility in EVs, we sequenced the EVs in the seminal plasma of Yorkshire boars with different sperm motility using whole RNA sequence.