Project description:Transcriptional profiling of C. perfringens 13 strain compared with strain 13∆cpe1786 erm after growth in minimal medium with 0.5 mM cystine.
Project description:Transcriptional profiling of C. perfringens 13 strain compared with strain 13?cpe1786 erm after growth in minimal medium with 0.5 mM cystine. two-condition experiment, 13 vs 13?cpe1786 erm, 4 biological replicates for each condition
Project description:RevR is a putative orphan response regulator with a high degree of similarity to YycF from Bacilus subtilis and PhoB from Clostridium kluyveri. A revR deletion mutant of C. perfringens strain 13 was generated and the transcriptome analysed using microarrays.
Project description:RevR is a putative orphan response regulator with a high degree of similarity to YycF from Bacilus subtilis and PhoB from Clostridium kluyveri. A revR deletion mutant of C. perfringens strain 13 was generated and the transcriptome analysed using microarrays. Total RNA was isolated from exponentially growing cells from the revR mutant and the wild-type control. Gene expression levels were compared between the revR mutant and wild-type strain 13
Project description:Transcriptionnal profiling of C. perfringens 13 strain comparing growth in minimal medium with 1 mM homocysteine with growth in minimal medium with 0.5 mM cystine.
Project description:Clostridium perfringens type A is a common source of food poisoning in humans. Vegetative cells sporulate in the small intestinal tract and produce a major pathogenic factor, C. perfringens enterotoxin (CPE) during sporulation. Although sporulation plays a critical role in the pathogenesis of food poisoning, the mechanisms to induce in vivo sporulation remain unclear. Bile salts had been identified to mediate sporulation, and we have confirmed deoxycholate (DCA)-induced sporulation in C. perfringens strain NCTC8239 co-cultured with human intestinal epithelial Caco-2 cells. In this study, we performed global transcriptome analysis of strain NCTC8239 to elucidate the mechanism to induce sporulation by DCA.