Project description:The differentiation of preadipocytes into adipocytes is controlled by several transcription factors, including peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), which are known as master regulators of adipogenesis. BCL11B is a zinc finger-type transcription factor that regulates the development of the skin and central nervous and immune systems. Here, we found that BCL11B was expressed in the white adipose tissue (WAT), particularly the subcutaneous WAT and that BCL11Bâ/â mice had a reduced amount of subcutaneous WAT. During adipogenesis, BCL11B expression transiently increased in 3T3-L1 preadipocytes and mouse embryonic fibroblasts (MEFs). The ability for adipogenesis was reduced in BCL11B knockdown 3T3-L1 cells and BCL11Bâ/â MEFs, whereas the ability for osteoblastogenesis was unaffected in BCL11Bâ/â MEFs. Luciferase reporter gene assays revealed that BCL11B stimulated C/EBPβ activity. Furthermore, the expression of downstream genes of the Wnt/β-catenin signaling pathway was not suppressed in BCL11Bâ/â MEFs during adipogenesis. Thus, this study identifies BCL11B as a novel regulator of adipogenesis, which works, at least in part, by stimulating C/EBPβ activity and suppressing the Wnt/β-catenin signaling pathway. MEFs were derived from embryonic day 12.5 BCL11B+/+ and BCL11Bâ/â C57BL6 mice embryos. After 2 times passage, MEFs were differentiated using the adipocyte differentiation medium and 10 μM pioglitazone. After 12 h of adipocyte differentiation, gene expression profiles were analyzed by DNA microarray.
Project description:Using a supercritical fluid chromatography-mass spectrometry (SFC-MS)-based methodology, we quantified phosphoinositides (PIPs) species in mouse embryonic fibroblasts (MEFs) from WT or FIP200 KO mice during autophagosome formation.
Project description:Using a supercritical fluid chromatography-mass spectrometry (SFC-MS)-based methodology, we quantified phosphoinositides (PIPs) species in LPIAT1 KO mouse embryonic fibroblasts (MEFs).
Project description:The differentiation of preadipocytes into adipocytes is controlled by several transcription factors, including peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), which are known as master regulators of adipogenesis. BCL11B is a zinc finger-type transcription factor that regulates the development of the skin and central nervous and immune systems. Here, we found that BCL11B was expressed in the white adipose tissue (WAT), particularly the subcutaneous WAT and that BCL11B−/− mice had a reduced amount of subcutaneous WAT. During adipogenesis, BCL11B expression transiently increased in 3T3-L1 preadipocytes and mouse embryonic fibroblasts (MEFs). The ability for adipogenesis was reduced in BCL11B knockdown 3T3-L1 cells and BCL11B−/− MEFs, whereas the ability for osteoblastogenesis was unaffected in BCL11B−/− MEFs. Luciferase reporter gene assays revealed that BCL11B stimulated C/EBPβ activity. Furthermore, the expression of downstream genes of the Wnt/β-catenin signaling pathway was not suppressed in BCL11B−/− MEFs during adipogenesis. Thus, this study identifies BCL11B as a novel regulator of adipogenesis, which works, at least in part, by stimulating C/EBPβ activity and suppressing the Wnt/β-catenin signaling pathway.
Project description:Primary mouse embryonic fibroblasts (MEFs) from wt and MK2/3 KO mice were treated with 20µM etoposide. Primary MEFs from wt and MK2/3 KO mice were treated with 20µM etoposide and RNA extracted after 1h and 6h.
Project description:The cytoplasmic actin proteins, beta- and gamma-actin, are 99% identical but perform non-redundant functions. Genes encoding the cytoplasmic actins, Actb and Actg1, respectively, are less similar but still share 89% of their nucleotide sequences. Knockout (KO) of Actb by deletion of first coding exons 2 and 3 in mice is embryonic lethal while KO embryonic fibroblasts (MEFs) fail to proliferate. In contrast, KO of Actg1 is viable but mice lacking Actg1 present with increased perinatal lethality and Actg1 KO MEFs present with a much milder defect in cell proliferation. Recent studies have identified important protein-independent functions for both Actb and Actg1 and demonstrate that deletions within the Actb nucleotide sequence, and not loss of the beta-actin protein, cause the most severe phenotypes in KO mice and cells. Here, we use a multi-omics approach to better understand what drives the phenotypes of Actb KO MEFs. RNA-sequencing and mass spectrometry of Actb KO MEFs reveal largescale changes to the transcriptome, proteome, and phosphoproteome. Pathway analysis of genes and proteins differentially expressed upon Actb KO shows widespread dysregulation of genes involved in the cell cycle. Together, these data suggest novel, protein-independent roles for Actb in regulating gene expression associated with control of cell proliferation.
Project description:Comparisons of gene expression profiles of BAHD1-KO MEFs to those of wild-type MEFs (sampled at embryonic day E13.5). We used DNA microarrays to identify the repertoire of genes differentially expressed by ablation of the BAHD1 gene in mouse embryonic fibroblasts.