Project description:Chronic inflammation facilitates tumor progression. We discovered that a subset of non-small cell lung cancer cells underwent a gradually progressing epithelial-to-mesenchymal (EMT) phenotype following a 21-day exposure to IL-1β, an abundant proinflammatory cytokine in the at-risk for lung cancer pulmonary and the lung tumor microenvironments. Pathway analysis of the gene expression profile and in vitro functional studies revealed that the EMT and EMT-associated phenotypes, including enhanced cell invasion, PD-L1 upregulation, and chemoresistance, were sustained in the absence of continuous IL-1β exposure. We referred to this phenomenon as EMT memory. Utilizing a doxycycline-controlled SLUG expression system, we found that high expression of the transcription factor SLUG was indispensable for the establishment of EMT memory. High SLUG expression in tumors of lung cancer patients was associated with poor survival. Chemical or genetic inhibition of SLUG upregulation prevented EMT following the acute IL-1β exposure but did not reverse EMT memory. Chromatin immunoprecipitation and methylation-specific PCR further revealed a SLUG-mediated temporal regulation of epigenetic modifications, including accumulation of H3K27, H3K9, and DNA methylation, in the CDH1 (E-cadherin) promoter following the chronic IL-1β exposure. Chemical inhibition of DNA methylation not only restored E-cadherin expression in EMT memory, but also primed cells for chemotherapy-induced apoptosis.
Project description:The epithelial-mesenchymal transition (EMT) regulator Slug has multifaceted roles in controlling lung cancer progression, but the downstream targets and underlying mechanisms of Slug remain undetermined. The miRNAs downstream of Slug in lung cancer cells were examined using Illumina bead arrays and TaqMan low-density arrays.
Project description:We demonstrate that miR-708 is one of the most highly overexpressed miRNAs in non-small cell lung cancer. High level of miR-708 in tumor is also associated with a reduced overall survival in lung adenocarcinomas from never smokers. Functionally, miR-708 overexpression increases the proliferation, migration, and invasion in cultured cells and down regulates TMEM88, a negative regulator of Wnt signaling. Jointly, our results support an oncogenic role of miR-708 by activating Wnt signaling pathway to promote lung cancer progression.
Project description:Recent genetic evidence has revealed microRNA-137 (miR-137) as a risk gene in schizophrenia and autism spectrum disorder (ASD), and the following cellular studies have demonstrated the importance of miR-137 in regulating neurogenesis. We have generated miR-137 knockout mice which display behaviors that resemble some symptoms of these two diseases. To investigate the underlying molecular mechanism, we performed comprehensive analyses of the entire RNA and protein molecules of the miR-137 mouse brains. The dataset uploaded here is the raw data of the mass spectrometry-based whole proteome analysis of the six miR-137 mouse brains: wild-type, heterozygous (miR-137+/–) and homozygous (miR-137–/–) from two different litters. The tandem mass tag (TMT) methodology was employed in this proteomics analysis for the quantitation. The sample channels are: 128C (miR-137+/+, litter 1), 129N (miR-137+/–, litter 1), 129C (miR-137–/–, litter 1), 130N (miR-137+/+, litter 2), 130C (miR-137+/–, litter 2), and 131N (miR-137–/–, litter 2).
Project description:We demonstrate that miR-708 is one of the most highly overexpressed miRNAs in non-small cell lung cancer. High level of miR-708 in tumor is also associated with a reduced overall survival in lung adenocarcinomas from never smokers. Functionally, miR-708 overexpression increases the proliferation, migration, and invasion in cultured cells and down regulates TMEM88, a negative regulator of Wnt signaling. Jointly, our results support an oncogenic role of miR-708 by activating Wnt signaling pathway to promote lung cancer progression. We performed miRNA expression profiling in matched lung adenocarcinoma and uninvolved lung using 47 pairs from formalin-fixed, paraffin-embedded [FFPE] tissues from never smokers. We performed miRNA expression profiling in matched lung adenocarcinoma and uninvolved lung using 56 pairs of fresh-frozen [FF] samples from never smokers.
Project description:Smoking is a significant risk factor for lung cancer, the leading cause of cancer-related deaths worldwide. While microRNAs are regulators of many airway gene-expression changes induced by smoking, their role in modulating changes associated with lung cancer in these cells remains unknown. Here, we use next-generation sequencing of small RNAs in the airway to identify miR-4423 as a novel primate-specific microRNA associated with lung cancer and expressed primarily in mucociliary epithelium. The endogenous expression of miR-4423 increases as bronchial epithelial cells undergo differentiation into mucociliary epithelium in vitro and its overexpression during this process causes an increase in the number of ciliated cells. Furthermore, expression of miR-4423 is reduced in most lung tumors and in cytologically normal epithelium of the mainstem bronchus of smokers with lung cancer. In addition, ectopic expression of miR-4423 in a subset of lung cancer cell lines reduces their anchorage-independent growth and significantly decreases the size of the tumors formed in a mouse xenograft model. Consistent with these phenotypes, overexpression of miR-4423 induces a differentiated-like pattern of airway epithelium gene expression and reverses the expression of many genes that are altered in lung cancer. Together, our results indicate that miR-4423 is a novel regulator of airway epithelium differentiation and that the abrogation of its function contributes to lung carcinogenesis. Small RNA expression was profiled from pooled bronchial airway epithelial cell brushings (n=3 patients/pool) obtained during bronchoscopy from healthy never (NS) and current smokers (S) and smokers with (C) and without (NC) lung cancer. MicroRNA hsa-miR-4423 was over expressed in H1299, Calu6, SW900 and H2170 lung cancer cell lines.
Project description:Smoking is a significant risk factor for lung cancer, the leading cause of cancer-related deaths worldwide. While microRNAs are regulators of many airway gene-expression changes induced by smoking, their role in modulating changes associated with lung cancer in these cells remains unknown. Here, we use next-generation sequencing of small RNAs in the airway to identify miR-4423 as a novel primate-specific microRNA associated with lung cancer and expressed primarily in mucociliary epithelium. The endogenous expression of miR-4423 increases as bronchial epithelial cells undergo differentiation into mucociliary epithelium in vitro and its overexpression during this process causes an increase in the number of ciliated cells. Furthermore, expression of miR-4423 is reduced in most lung tumors and in cytologically normal epithelium of the mainstem bronchus of smokers with lung cancer. In addition, ectopic expression of miR-4423 in a subset of lung cancer cell lines reduces their anchorage-independent growth and significantly decreases the size of the tumors formed in a mouse xenograft model. Consistent with these phenotypes, overexpression of miR-4423 induces a differentiated-like pattern of airway epithelium gene expression and reverses the expression of many genes that are altered in lung cancer. Together, our results indicate that miR-4423 is a novel regulator of airway epithelium differentiation and that the abrogation of its function contributes to lung carcinogenesis. Small RNA expression was profiled from pooled bronchial airway epithelial cell brushings (n=3 patients/pool) obtained during bronchoscopy from healthy never (NS) and current smokers (S) and smokers with (C) and without (NC) lung cancer. MicroRNA hsa-miR-4423 was over expressed in H1299, Calu6, SW900 and H2170 lung cancer cell lines.
Project description:Background: The well-characterized function of the transcriptional repressor, Slug, is to promote EMT and tumor invasion/metastasis by down-regulating E-cadherin expression. In this study, we investigated the significance of Slug during the S phase. Method: Slug mRNA expression was isolated from thymidine-arrested CL1-5/AS2neo (control) and CL1-5/AS2neo-Slug-WT stable cells. The Agilent oligonucleotide microarray analysis was performed to identify Slug downstream genes. Results: Overexpression of Slug inhibited lung [3H]-thymidine incorporation and delayed S phase progression. By using Agilent microarray we have identified panel of genes altered by Slug overexpression. Slug can down-regulate target genes about cell cycle networks for DNA replication, DNA replication checkpoint and genomic stability, such as TOP1, ORC4, RFC3, and Rad17. Conclusions: the multifaceted role of Slug in cancer progression by controlling the epithelial-mesenchymal transition and genome stability. Two-condition experiment, Vector vs. Slug overexpression cells. The cDNAs encoding full-length human Slug were amplified and subcloned into lentiviral pLKO_AS2.neo which generated full-length Slug. Vector control or Slug lentivirus were transduced into CL1-5 cells and Gentamycin was used to select stable cells.
Project description:Background: The well-characterized function of the transcriptional repressor, Slug, is to promote EMT and tumor invasion/metastasis by down-regulating E-cadherin expression. In this study, we investigated the significance of Slug during the S phase. Method: Slug mRNA expression was isolated from thymidine-arrested CL1-5/AS2neo (control) and CL1-5/AS2neo-Slug-WT stable cells. The Agilent oligonucleotide microarray analysis was performed to identify Slug downstream genes. Results: Overexpression of Slug inhibited lung [3H]-thymidine incorporation and delayed S phase progression. By using Agilent microarray we have identified panel of genes altered by Slug overexpression. Slug can down-regulate target genes about cell cycle networks for DNA replication, DNA replication checkpoint and genomic stability, such as TOP1, ORC4, RFC3, and Rad17. Conclusions: the multifaceted role of Slug in cancer progression by controlling the epithelial-mesenchymal transition and genome stability.