Project description:Waterpipe (also called hookah, shisha, or narghile) smoking is a common form of tobacco use in the Middle East. Its use is becoming more prevalent in Western societies, especially among young adults as an alternative form of tobacco use to traditional cigarettes. While the risk to cigarette smoking is well documented, the risk to waterpipe smoking is not well defined with limited information on its health impact at the epidemiologic, clinical and biologic levels with respect to lung disease. Based on the knowledge that airway epithelial cell DNA methylation is modified in response to cigarette smoke and in cigarette smoking-related lung diseases, we assessed the impact of light-use water-pipe smoking on DNA methylation of the small airway epithelium (SAE) and whether changes in methylation were linked to the transcriptional output of the cells. Small airway epithelium was obtained from 7 nonsmokers and 7 light-use (2.6 ± 1.7 sessions/wk) waterpipe-only smokers. Genome-wide comparison of SAE DNA methylation of waterpipe smokers to nonsmokers identified 727 probesets differentially methylated (fold-change >1.5, p<0.05) representing 673 unique genes. Dominant pathways associated with these epigenetic changes include those linked to G-protein coupled receptor signaling, aryl hydrocarbon receptor signaling and xenobiotic metabolism signaling, all of which have been associated with cigarette smoking and lung disease. Of the genes differentially methylated, 11.3% exhibited a corresponding significant (p<0.05) change in gene expression with enrichment in pathways related to regulation of mRNA translation and protein synthesis (eIF2 signaling and regulation of eIF4 and p70S6K signaling). Overall, these data demonstrate that light-use waterpipe smoking is associated with epigenetic changes and related transcriptional modifications in the SAE, the cell population demonstrating the earliest pathologic abnormalities associated with chronic cigarette smoking. This study demonstrates that light-use waterpipe smoking in young adults is associated with a broad range of genome-wide DNA methylation-related changes of the SAE impacting a number of genes linked to pathways previously associated with cigarette smoking. Further, many of these methylation-related changes correlate with waterpipe smoking-associated changes in the SAE transcriptome. Together, these data add to the accumulating evidence that waterpipe smoking is harmful, and may lead to lung disease.
Project description:Waterpipe (also called hookah, shisha, or narghile) smoking is a common form of tobacco use in the Middle East. Its use is becoming more prevalent in Western societies, especially among young adults as an alternative form of tobacco use to traditional cigarettes. While the risk to cigarette smoking is well documented, the risk to waterpipe smoking is not well defined with limited information on its health impact at the epidemiologic, clinical and biologic levels with respect to lung disease. Based on the knowledge that airway epithelial cell DNA methylation is modified in response to cigarette smoke and in cigarette smoking-related lung diseases, we assessed the impact of light-use water-pipe smoking on DNA methylation of the small airway epithelium (SAE) and whether changes in methylation were linked to the transcriptional output of the cells. Small airway epithelium was obtained from 7 nonsmokers and 7 light-use (2.6 ± 1.7 sessions/wk) waterpipe-only smokers. Genome-wide comparison of SAE DNA methylation of waterpipe smokers to nonsmokers identified 727 probesets differentially methylated (fold-change >1.5, p<0.05) representing 673 unique genes. Dominant pathways associated with these epigenetic changes include those linked to G-protein coupled receptor signaling, aryl hydrocarbon receptor signaling and xenobiotic metabolism signaling, all of which have been associated with cigarette smoking and lung disease. Of the genes differentially methylated, 11.3% exhibited a corresponding significant (p<0.05) change in gene expression with enrichment in pathways related to regulation of mRNA translation and protein synthesis (eIF2 signaling and regulation of eIF4 and p70S6K signaling). Overall, these data demonstrate that light-use waterpipe smoking is associated with epigenetic changes and related transcriptional modifications in the SAE, the cell population demonstrating the earliest pathologic abnormalities associated with chronic cigarette smoking. This study demonstrates that light-use waterpipe smoking in young adults is associated with a broad range of genome-wide DNA methylation-related changes of the SAE impacting a number of genes linked to pathways previously associated with cigarette smoking. Further, many of these methylation-related changes correlate with waterpipe smoking-associated changes in the SAE transcriptome. Together, these data add to the accumulating evidence that waterpipe smoking is harmful, and may lead to lung disease.
Project description:Modification of Gene Expression of the Small Airway Epithelium in Response to Cigarette Smoking The earliest morphologic evidence of changes in the airways associated with chronic cigarette smoking is in the small airways. To help understand how smoking modifies small airway structure and function, we developed a strategy using fiberoptic bronchoscopy and brushing to sample the human small airway (10th-12th order) bronchial epithelium to assess gene expression (HG-133 Plus 2.0 array) in phenotypically normal smokers (n=10, 33 ± 7 pack-yr) compared to matched non-smokers (n=12). Even though the smokers were phenotypically normal, analysis of the small airway epithelium of the smokers compared to the non-smokers demonstrated up- and -down-regulation of genes in multiple categories relevant to the pathogenesis of chronic obstructive lung disease (COPD), including genes coding for cytokines/innate immunity, apoptosis, mucin, response to oxidants and xenobiotics, and general cellular processes. In the context that COPD starts in the small airways, these gene expression changes in the small airway epithelium in phenotypically normal smokers are candidates for the development of therapeutic strategies to prevent the onset of COPD. Keywords: smokers vs non-smokers
Project description:Smoking-induced lung disease is one of the most prevalent forms of lung disease but also one of the more diverse. Based on the phenotypic diversity caused by the same environmental stress, we hypothesized that smoking may induce changes in lung cell expression of genes that, with specific variants, are causative of monogenic lung disease, i.e., not that smoking induces a phenocopy of a genetic disease, but smoking may subtly modify the expression of genes known to be associated with genetic disorders with distinct lung disease phenotypes. To assess this hypothesis, and based on the knowledge that most smoking-related disease phenotypes start in the small airway epithelium, we asked: are the genes associated with the monogenic lung disorders expressed in the small airway epithelium, and if so, does smoking alter the expression of these genes? To accomplish this, we examined small airway epithelium expression of 92 genes known to be associated with 17 monogenic lung disorders in 230 samples of small airway epithelium (SAE) obtained from healthy nonsmokers and healthy smokers without any clinical evidence of disease. Of the 86 monogenic disorder-related genes we found expressed in the SAE, strikingly, 37 were significantly differentially expressed in normal smokers compared to normal nonsmokers (p<0.05, Benjamini-Hochberg correction for multiple comparisons). The data demonstrates that the effect of smoking on the transcriptome of small airway epithelium includes significantly altered regulation of the genes responsible for known monogenic disorders.
Project description:The earliest morphologic evidence of changes in the airways associated with chronic cigarette smoking is in the small airways. To help understand how smoking modifies small airway structure and function, we developed a strategy using fiberoptic bronchoscopy and brushing to sample the human small airway (10th-12th order) bronchial epithelium to assess gene expression (Affymetrix HG-U133A array) in phenotypically normal smokers (n=6, 24 ± 4 pack-yr) compared to matched non-smokers (n=5). Compared to samples from the large (2nd to 3rd order) bronchi, the small airway samples had a higher proportion of ciliated cells, but less basal, undifferentiated, and secretory cells. The small, but not large, airway samples included Clara cells, a cell found only in the small airway epithelium, and the small, but not the large, airway epithelium expressed genes for the surfactant apoproteins. Despite the fact that the smokers were phenotypically normal, analysis of the small airway epithelium of the smokers compared to the non-smokers demonstrated up- and -down-regulation of genes in multiple categories relevant to the pathogenesis of chronic obstructive lung disease (COPD), including genes coding for cytokines/innate immunity, apoptosis, pro-fibrosis, mucin, responses to oxidants and xenobiotics, antiproteases and general cellular processes. In the context that COPD starts in the small airways, these changes in gene expression in the small airway epithelium in phenotypically normal smokers are candidates for the development of therapeutic strategies to prevent the onset of COPD. Keywords: response to cigarette smoking
Project description:Disparate Oxidant-related Gene Expression of Human Small Airway Epithelium Compared to Autologous Alveolar Macrophages in Response to the In Vivo Oxidant Stress of Cigarette Smoking The oxidant burden of cigarette smoking induces lung cell dysfunction, and play a significant role in the pathogenesis of lung disease. Two cell populations directly exposed to the oxidants in cigarette smoke are the small airway epithelium and alveolar macrophages. Of these, the epithelium appears to be more vulnerable to smoking, becoming disordered in differentiation, repair and function, while alveolar macrophages become activated, without becoming diseased. In this context, we asked: for the same individuals, what is the baseline trancriptome of oxidant-related genes in small airway epithelium compared to alveolar macrophages and do the responses of the transcriptome of these 2 cell populations differ substantially to inhaled cigarette smoke? To address these questions we used microarray gene expression and TaqMan analysis to assess the gene expression profile of known oxidant-related genes in paired samples recovered by bronchoscopy from small airway epithelium and alveolar macrophages from the same healthy nonsmokers and normal smokers. Of the 155 oxidant-related genes surveyed, 122 (77%) were expressed in both cell populations in nonsmokers. However, of the genes expressed by both cell populations, oxidant related gene expression levels were higher in alveolar macrophages (67 genes, 43%) than small airway epithelium (37 genes, 24%). There were more oxidant-related genes uniquely expressed in the small airway epithelium (17%), than in alveolar macrophages (5%). In healthy smokers, the majority of oxidant-related genes were expressed in both cell populations, but there were marked differences in the numbers of oxidant-related genes that smoking up- or down-regulated. While smoking up-regulated 15 genes (10%) and down-regulated 7 genes (5%) in the small airway epithelium, smoking had far less effect on alveolar macrophages [only 4 (3%) genes up-regulated, and only 1 (0.6%) down-regulated]. Only a small number of smoking responsive oxidant-related genes overlapped between the two cell types (2 up-regulated, and no down-regulated genes). Consistent with this observation, pathway analysis of smoking-responsive genes in the small airway epithelium showed oxidant-related pathways dominated, but in alveolar macrophages immune-response pathways dominated. Thus, the responses of the oxidant-related transcriptome of cells with an identical genome and exposed to the same oxidant stress of cigarette smoking are very different, with responses of oxidant-related genes of alveolar macrophages far more subdued than that of small airway epithelium, consistent with the clinical observation that, while the small airway epithelium is vulnerable, alveolar macrophages are not "diseased" in response to the oxidant stress of cigarette smoking. Gene expression profiles of known oxidant-related genes in paired samples recovered by bronchoscopy from small airway epithelium and alveolar macrophages from the same healthy nonsmokers and normal smokers.
Project description:The initial site of smoking-induced lung disease is the small airway epithelium, which is difficult and time consuming to sample by fiberoptic bronchoscopy. We developed a rapid, office-based procedure to obtain trachea epithelium without conscious sedation from healthy nonsmokers (n=26) and healthy smokers (n=19, 27 ± 15 pack-yr). Gene expression differences [fold-change >1.5, p< 0.01, Benjamini-Hochberg correction] were assessed with Affymetrix microarrays. 1,057 probe sets were differentially expressed in healthy smokers vs nonsmokers, representing >500 genes. Trachea gene expression was compared to an independent group of small airway epithelial samples (n=23 healthy nonsmokers, n=19 healthy smokers, 25 ± 12 pack-yr). The trachea epithelium is more sensitive to smoking, responding with 3-fold more differentially-expressed genes than small airway epithelium. The trachea transcriptome paralleled the small airway epithelium, with 156 of 167 (93%) genes that are significantly up- and down-regulated by smoking in the small airway epithelium showing similar direction and magnitude of response to smoking in the trachea. Trachea epithelium can be obtained without conscious sedation, representing a less invasive surrogate “canary” for smoking-induced changes in the small airway epithelium. This should prove useful in epidemiologic studies correlating gene expression with clinical outcome in assessing smoking-induced lung disease.