Project description:Deep sequencing of mRNA from Pacific oyster Crassostrea gigas Competent larvae of Crassostrea gigas were treated with epinephrine solution, and then sampled at different time intervals. For shell damage experiment, shell were broken and then tissues were sampled at different time intervals.
Project description:Pirarucu (Arapaima gigas, or A. gigas) is a native fish species to Amazon basin and, economically important in the Brazilian Amazonian for its great potential to aquaculture. In the natural environment the A. gigas is captured only in the sustainable development reserves of the State of Amazonas by applying a system of rotation in fishing in order to avoid overfishing of this important fishing resource. The reproductive biology of A. gigas has long been intriguing; however, very little is known about the molecular pathways underlying their sexual differentiation and determination. Using the SOLiD sequencing platform, a total of 432,058,560 short sequencing reads were produced. An average of ~30% of sequencing reads could be mapped to Asian arowana reference cDNAs. 305 genes showed higher expression in female brain against 8 gene with higher expressing in male brain. In gonad, there are 120 genes higher expressed in female against 10 gene higher expressed in male.
Project description:Deep sequencing of samples from different development stages, different adult organs and different stress treatments of Pacific oyster Crassostrea gigas
Project description:Low salinity is one of the main factors limiting the distribution and survival of marine species. As a euryhaline species, the Pacific oyster Crassostrea gigas can be tolerant to relative low salinity. Through Illumina sequencing, we generated two transcriptomes with samples taken from gills of oysters exposed to the low salinity seawater versus the optimal seawater. By RNAseq technology, we found 1665 up-regulation genes and 1815 down-regulation genes that may regulate osmotic stress in C. gigas. As blasted by GO annotation and KEGG pathway mapping, functional annotation of the genes recovered diverse biological functions and processes. The genes regulated significantly were dominated in cellular process and regulation of biological process, intracellular and cell, binding and protein binding according to GO annotation. The results highlight genes related to osmoregulation and signaling and interactions of osmotic stress response, anti-apoptotic reactions as well as immune response, cell adhesion and communication, cytosqueleton and cell cycle. The study aimed to compare the expression data of the two transcriptomes to provide some useful insights into signal transduction pathways in oysters and offer a number of candidate genes as potential markers of tolerance to hypoosmotic stress for oysters. In addition, the characterization of C. gigas transcriptome will facilitate research into biological processes underlying physiological adaptations to hypoosmotic shock for marine invertebrates.
Project description:Low salinity is one of the main factors limiting the distribution and survival of marine species. As a euryhaline species, the Pacific oyster Crassostrea gigas can be tolerant to relative low salinity. Through Illumina sequencing, we generated two transcriptomes with samples taken from gills of oysters exposed to the low salinity seawater versus the optimal seawater. By RNAseq technology, we found 1665 up-regulation genes and 1815 down-regulation genes that may regulate osmotic stress in C. gigas. As blasted by GO annotation and KEGG pathway mapping, functional annotation of the genes recovered diverse biological functions and processes. The genes regulated significantly were dominated in cellular process and regulation of biological process, intracellular and cell, binding and protein binding according to GO annotation. The results highlight genes related to osmoregulation and signaling and interactions of osmotic stress response, anti-apoptotic reactions as well as immune response, cell adhesion and communication, cytosqueleton and cell cycle. The study aimed to compare the expression data of the two transcriptomes to provide some useful insights into signal transduction pathways in oysters and offer a number of candidate genes as potential markers of tolerance to hypoosmotic stress for oysters. In addition, the characterization of C. gigas transcriptome will facilitate research into biological processes underlying physiological adaptations to hypoosmotic shock for marine invertebrates. Twelve Pacific oysters were exposed in low salinity (8‰) seawater and in optimal salinity (25‰) seawater, respectively. Gills from six oysters in each condition were balanced mixed respectively. The transcriptomes of two samples were generated by deep sequencing, using Illumina HiSeq2000.