Project description:Bcl11a is a transcription factor known to regulate lymphoid and erythroid development. Recent bioinformatic analysis of global gene expression patterns has suggested a role for Bcl11a in the development of dendritic cell (DC) lineages. We tested this hypothesis by analyzing the development of DC and other lineages in Bcl11a(-/-) mice. We show that Bcl11a is required for expression of IL-7 receptor (IL-7R) and Flt3 in early hematopoietic progenitor cells. The loss of IL-7R(+) common lymphoid progenitors accounts for previously described lymphoid defects in Bcl11a(-/-) mice. In addition, we found severely decreased numbers of plasmacytoid dendritic cells (pDCs) in Bcl11a(-/-) fetal livers and in the bone marrow of Bcl11a(-/-) fetal liver chimeras. Moreover, Bcl11a(-/-) cells show severely impaired in vitro development of Flt3L-derived pDCs and classical DCs (cDCs). In contrast, we found normal in vitro development of DCs from Bcl11a(-/-) fetal liver cells treated with GM-CSF. These results suggest that the persistent cDC development observed in Bcl11a(-/-) fetal liver chimeras reflects derivation from a Bcl11a- and Flt3-independent pathway in vivo. We compared global gene expression by microarray for donor-derived wild-type and Bcl11a(-/-) populations isolated from chimeric bone marrow to identify Bcl11a target genes that explain its role in hematopoietic progenitors. GMP and MPP populations were sorted from fetal liver chimeras and pooled by donor genotype. RNA was isolated using an RNAqueous-Micro Kit (Ambion) and submitted for amplification, labeling and hybridization. Expression values were analyzed after RMA quantile normalization using ArrayStar software (DNASTAR).
Project description:Bcl11a is a transcription factor known to regulate lymphoid and erythroid development. Recent bioinformatic analysis of global gene expression patterns has suggested a role for Bcl11a in the development of dendritic cell (DC) lineages. We tested this hypothesis by analyzing the development of DC and other lineages in Bcl11a(-/-) mice. We show that Bcl11a is required for expression of IL-7 receptor (IL-7R) and Flt3 in early hematopoietic progenitor cells. The loss of IL-7R(+) common lymphoid progenitors accounts for previously described lymphoid defects in Bcl11a(-/-) mice. In addition, we found severely decreased numbers of plasmacytoid dendritic cells (pDCs) in Bcl11a(-/-) fetal livers and in the bone marrow of Bcl11a(-/-) fetal liver chimeras. Moreover, Bcl11a(-/-) cells show severely impaired in vitro development of Flt3L-derived pDCs and classical DCs (cDCs). In contrast, we found normal in vitro development of DCs from Bcl11a(-/-) fetal liver cells treated with GM-CSF. These results suggest that the persistent cDC development observed in Bcl11a(-/-) fetal liver chimeras reflects derivation from a Bcl11a- and Flt3-independent pathway in vivo. We compared global gene expression by microarray for donor-derived wild-type and Bcl11a(-/-) populations isolated from chimeric bone marrow to identify Bcl11a target genes that explain its role in hematopoietic progenitors.
Project description:The functions of innate lymphoid cells (ILCs) in immune system are increasingly appreciated, whereas the early development of ILCs in human remains elusive. In this study, we sorted humanhematopoietic stem progenitor cells, lymphoid progenitors, presumed ILC progenitor/precursors and mature ILCs in the fetal hematopoietic, lymphoid and non-lymphoid tissues, from 8 to 12 PCW,for single-cell RNA-sequencing, followed by computational analysis and functional validation. We delineated the early phase of ILC development, from hematopoietic stem progenitor cells to multipotent lymphoid progenitors and to ILC progenitors, which mainly occurred in fetal liver and intestine. We further unveiled interleukin-3 receptor alpha (IL-3RA) as the surface marker for the lymphoid progenitors with T cell, B cell and ILC potentials. Notably, we determined the heterogeneity and tissue distribution of each ILC subpopulation, revealing the shared proliferating characteristics of the precursors of each ILC subtype. Additionally, a novel unconventional ILC2 subpopulation (CRTH2-CCR9+ ILC2) was identified in fetal thymus. Taken together, our study illuminates the precise cellular and molecular features underlying the stepwise formation of human fetal ILC hierarchy with remarkable spatiotemporal heterogeneity.
Project description:We isolated RNA from sorted common myeloid progenitor cells from wild-type fetal liver, wild-type adult bone marrow, transgenic Lin28b bone marrow, let-7b/c knock-out bone marrow, and Lin28b-deficient fetal liver and compared mRNA expression profiles. Examination of mRNA expression in common myeloid progenitors from multiple developmental time points and genotypes. Please note that iLin28* samples represent Lin28-induced samples, while the iLin28_*_vavcre samples represent hematopoietic-specific induction of Lin28.
Project description:Nine different cell types (common dendritic progenitor (CDP), pre-conventional dendritic cell (pre-cDC), common dendritic progenitor (CDPr, according to Rodrigues et al., but this population was flawed in sorting purity), Flt3+ CD11c+ Siglec-H+ CCR9-low B220-low progenitor cell (lo-lo), Flt3 + CD11c+ Siglec-H+ CCR9-low B220-high progenitor cell (lo-hi), plasmacytoid dendritic cell (pDC), Ly6D+ lymphoid progenitor (SP), Ly6D+ Siglec-H+ lymphoid progenitor (DP) and common lymphoid progenitor (CLP)) were sorted to allow for analysis of their transcriptomic relation and/or similarity. The pDC_precursor_scvelo.h5ad file is a processed file ready for direct downstream analysis with scvelo.
Project description:Growth factor independent 1 (Gfi1) is a transcriptional repressor originally identified as a common integration site in Moloney-murine-leukemia-virus-induced T-cell leukemia. Gfi1-/- mice display increased apoptosis of developing thymocytes and T lymphopenia; however, there are contradictory reports of the absolute number of Gfi1-/- early T lineage progenitors. We used floxed alleles of Gfi1 crossed to various T-cell-specific Cre transgenes to map the requirements for Gfi1 during lymphoid priming and development. We show that Gfi1 is necessary for the proper formation and function of both lymphoid-primed multipotent progenitors and early T lineage progenitors. These defects correlate with a global inability of Gfi1-/- progenitors to enforce the activation of lymphoid genes including IL7R, Rag1, Flt3 and Notch1. Forced expression of intracellular Notch1 fails to rescue the Gfi1-/- defective lymphoid gene signature or Gfi1-/- T cell development. Instead, activation of Notch1 in Gfi1-/- cells results in a potent synthetic lethal phenotype that is most dramatic in immature thymocytes, but absent in mature peripheral T cells where developmental transcriptional programs are silent. Moreover, we find that the requirement for Gfi1-transcriptional integration of Notch-driven lymphoid transcriptional programs is cell autonomous. Our data indicate that Gfi1 is required at multiple independent stages of lymphoid development. In hematopoietic progenitors Gfi1 is necessary to integrate Notch1 signaling, mediate lymphoid priming, the formation of early T lineage progenitors and subsequent T lineage commitment. Lineage negative cells were purified by magnetic beads from RosaCreERT2 Gfi1 ex4-5 floxed mice and an activated Notch1 signal was introduced using a GFP+ retroviral vector. GFP+ progenitors were FACS-sorted and cultured in semi-solid media for one week to allow sufficient time to to instruct lymphoid differentiation, then replated in 1uM 4-OHT or EtOH control. After an additional 7 days, CFU were disrupted and RNA was isolated for global gene expression using microarrays.