Project description:The transcription factor CrzA influences cell wall organization in the pathogenic fungus Aspergillus fumigatus, and also binds to the promoter regions of chitin synthase genes upon exposure to the antifungal drug caspofungin. To gain an overview of the genes directly regulated by CrzA, the CrzA binding sites were determined genome-wide by ChIP-seq
Project description:The full genome sequencing of the filamentous fungi Aspergillus nidulans, Aspergillus niger and Aspergillus oryzae has opened the possibilities for studying the cellular physiology of these fungi on a systemic level. As a tool to explore this, we are presenting an Affymetrix GeneChip developed for transcriptome analysis of any of the three above-mentioned aspergilli. Transcriptome analysis of triplicate batch cultivations of all three aspergilli on glucose-and xylose media has been performed, and used to validate the performance of the micro array. By doing gene comparisons of all three species, and cross-analysing this with the expression data, 23 genes, including the xylose transcriptional activator XlnR, have been identified to be a conserved response across the Aspergillus sp. Promoter analysis of the upregulated genes in all three species suggest the XlnR-binding site to be 5’-GGNTAAA-3’. We are thus presenting a validated tool for transcription analysis of three Aspergillus species and a methodology for comparative transcriptomics. Keywords: Physiological response
Project description:The full genome sequencing of the filamentous fungi Aspergillus nidulans, Aspergillus niger and Aspergillus oryzae has opened the possibilities for studying the cellular physiology of these fungi on a systemic level. As a tool to explore this, we are presenting an Affymetrix GeneChip developed for transcriptome analysis of any of the three above-mentioned aspergilli. Transcriptome analysis of triplicate batch cultivations of all three aspergilli on glucose-and xylose media has been performed, and used to validate the performance of the micro array. By doing gene comparisons of all three species, and cross-analysing this with the expression data, 23 genes, including the xylose transcriptional activator XlnR, have been identified to be a conserved response across the Aspergillus sp. Promoter analysis of the upregulated genes in all three species suggest the XlnR-binding site to be 5’-GGNTAAA-3’. We are thus presenting a validated tool for transcription analysis of three Aspergillus species and a methodology for comparative transcriptomics. Keywords: Physiological response
Project description:The full genome sequencing of the filamentous fungi Aspergillus nidulans, Aspergillus niger and Aspergillus oryzae has opened the possibilities for studying the cellular physiology of these fungi on a systemic level. As a tool to explore this, we are presenting an Affymetrix GeneChip developed for transcriptome analysis of any of the three above-mentioned aspergilli. Transcriptome analysis of triplicate batch cultivations of all three aspergilli on glucose-and xylose media has been performed, and used to validate the performance of the micro array. By doing gene comparisons of all three species, and cross-analysing this with the expression data, 23 genes, including the xylose transcriptional activator XlnR, have been identified to be a conserved response across the Aspergillus sp. Promoter analysis of the upregulated genes in all three species suggest the XlnR-binding site to be 5’-GGNTAAA-3’. We are thus presenting a validated tool for transcription analysis of three Aspergillus species and a methodology for comparative transcriptomics. Keywords: Physiological response
Project description:The full genome sequencing of the filamentous fungi Aspergillus nidulans, Aspergillus niger and Aspergillus oryzae has opened the possibilities for studying the cellular physiology of these fungi on a systemic level. As a tool to explore this, we are presenting an Affymetrix GeneChip developed for transcriptome analysis of any of the three above-mentioned aspergilli. Transcriptome analysis of triplicate batch cultivations of all three aspergilli on glucose-and xylose media has been performed, and used to validate the performance of the micro array. By doing gene comparisons of all three species, and cross-analysing this with the expression data, 23 genes, including the xylose transcriptional activator XlnR, have been identified to be a conserved response across the Aspergillus sp. Promoter analysis of the upregulated genes in all three species suggest the XlnR-binding site to be 5’-GGNTAAA-3’. We are thus presenting a validated tool for transcription analysis of three Aspergillus species and a methodology for comparative transcriptomics. Keywords: Physiological response Two conditions (glucose and xylose) and three biological replicates
Project description:The full genome sequencing of the filamentous fungi Aspergillus nidulans, Aspergillus niger and Aspergillus oryzae has opened the possibilities for studying the cellular physiology of these fungi on a systemic level. As a tool to explore this, we are presenting an Affymetrix GeneChip developed for transcriptome analysis of any of the three above-mentioned aspergilli. Transcriptome analysis of triplicate batch cultivations of all three aspergilli on glucose-and xylose media has been performed, and used to validate the performance of the micro array. By doing gene comparisons of all three species, and cross-analysing this with the expression data, 23 genes, including the xylose transcriptional activator XlnR, have been identified to be a conserved response across the Aspergillus sp. Promoter analysis of the upregulated genes in all three species suggest the XlnR-binding site to be 5’-GGNTAAA-3’. We are thus presenting a validated tool for transcription analysis of three Aspergillus species and a methodology for comparative transcriptomics. Keywords: Physiological response Two conditions (glucose and xylose) and three biological replicates
Project description:The full genome sequencing of the ?lamentous fungi Aspergillus nidulans, Aspergillus niger and Aspergillus oryzae has opened the possibilities for studying the cellular physiology of these fungi on a systemic level. As a tool to explore this, we are presenting an A?ymetrix GeneChip developed for transcriptome analysis of any of the three above-mentioned aspergilli. Transcriptome analysis of triplicate batch cultivations of all three aspergilli on glucose-and xylose media has been performed, and used to validate the performance of the micro array. By doing gene comparisons of all three species, and cross-analysing this with the expression data, 23 genes, including the xylose transcriptional activator XlnR, have been identi?ed to be a conserved response across the Aspergillus sp. Promoter analysis of the upregulated genes in all three species suggest the XlnR-binding site to be 5’-GGNTAAA-3’. We are thus presenting a validated tool for transcription analysis of three Aspergillus species and a methodology for comparative transcriptomics. Keywords: Physiological response Two conditions (glucose and xylose) and three biological replicates of each.
Project description:Genomic DNA from five strains, Aspergillus fumigatus Af71, Aspergillus fumigatus Af294, Aspergillus clavatus, Neosartorya fenneliae, and Neosartorya fischeri, were co-hybridized with that of Aspergillus fumigatus Af293 and compared.