Project description:Microbial fermentation is involved in the processing of a dark tea popular for centuries in Northwest China which has shown many health benefits. This study will examine anti-obesity, hyperlipidemic and hyperglycemic effects of CGMCC No.8730 Eurotium cristatum (EC) fermented dark tea (8730DT).
Project description:We investigated the effects of cholesterol on nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) in diethylnitrosamine-injected mice fed high-fat high-cholesterol (HFHC) diet versus high-fat (HF) alone. mRNA microarray analysis was applied for expressional aberrations.
Project description:In the animal study, both a decrease of serum alanine aminotransferase level and whole blood gene expression changes were observed in rats fed a MLP-containing high-fat diet compared with rats fed a high-fat diet.
Project description:In the animal study, both a decrease of serum alanine aminotransferase level and whole blood gene expression changes were observed in rats fed a MLP-containing high-fat diet compared with rats fed a high-fat diet.
Project description:Insulin resistance drives the development of type 2 diabetes (T2D). In liver, diacylglycerol (DAG) is a key mediator of lipid-induced insulin resistance. DAG activates protein kinase C epsilon (PKCε), which phosphorylates and inhibits the insulin receptor. In rats, a 3-day high fat diet produces hepatic insulin resistance through this mechanism, and knockdown of hepatic PKCε protects against high fat diet-induced hepatic insulin resistance. Here we employ a systems level approach to uncover additional signaling pathways involved in high fat diet-induced hepatic insulin resistance. We used quantitative phosphoproteomics to map global in vivo changes in hepatic protein phosphorylation in chow-fed, high fat-fed, and high fat-fed with PKCε knockdown rats to distinguish the impact of lipid- and PKCε-induced protein phosphorylation.
Project description:From a long time ago, supplementation of fermented enzyme foods could have worked health effects on the body in the east nevertheless, only a few studies reported functions of them such as weight loss and metabolic syndrome. Thus, it is necessary to be verified whether supplementation of fermented enzyme foods can act in the body as a functional material. Therefore, we investigated the anti-obesity effects of fermented mixed grain with digestive enzymes (FMG) in high-fat diet induced mice. Sixty C57BL/6J mice were divided into six dietary groups and fed a normal diet (ND), a high-fat diet (HFD), Bacilus Coagulans group, steamed grain group, low-dose fermented mixed grain group(L-FMG), high-dose fermented mixed grain group (H-FMG) supplement for 12 weeks. After sacrificing, body weight and body fat mass in H-FMG group were significantly decreased compared to HFD group with a simultaneous decrease in plasma lipids. Also, H-FMG significantly decreased the blood glucose and improved the glucose tolerance compared to HFD group. Moreover high-dose FMG supplementation dramatically decreased the levels of inflammatory cytokines which secreted from adipocyte. Taken together, our findings suggest that H-FMG ameliorate high fat-diet induced obesity and its complication and could be used as a potential preventive agent for obesity.
Project description:The objectives of this study were to understand the effect of phenolic compounds from fermented berry beverages on hyperglycemia and obesity in vivo using mice fed a high fat diet. Our hypothesis was that consumption of a fermented blueberry-blackberry beverage and its phenolic compounds would reduce the development of obesity and hyperglycemia in diet-induced obese mice. Body composition, histomorphological analysis of pancreatic islets and liver, and expression of genes involved in obesity and hyperglycemia were evaluated in order to explain the modulation of diet-induced obesity and hyperglycemia due to treatments.
Project description:Pu-erh tea has attracted increasing attention worldwide because of its special flavor and health effects, but its impact on composition and function of the gut microbiota remains unclear. The aim of this study was to investigate effects of aqueous extracts of fermented (ripe) and non-fermented (raw) Pu-erh teas on the composition and function of intestinal microbiota of rats with diet-induced obesity. We conducted a comparative metagenomic and metaproteomic investigation of the microbial communities in cecal samples taken from obese rats administrated with or without extracts of raw and ripe Pu-erh tea. By analyzing the composition and diversity of 16S rRNA amplicons and expression profiles of 814 distinct proteins, we found that, despite differences in the chemical compositions of the raw and ripe Pu-erh tea, administration of either at two different doses (0.15 and 0.40 g/Kg body weight), significantly (P<0.05) increased community diversity, and changed the composition of the cecal microbiota by increasing the relative abundances of Firmicutes and decreasing those of Bacteroidetes. Community metabolic processes including sucrose metabolism, glycolysis, syntheses of proteins, rRNA and antibiotics were significantly (P<0.05), or had a tendency (0.10<P<0.05) to be, promoted by enriching relevant enzymes. Furthermore, evidences from population, molecular and metabolic levels have shown that polyphenols of raw Pu-erh tea and their metabolites can promote potentially the growth of Akkermansia municiphila by stimulating the type II and III secretion system protein, elongation factor Tu, and glyceraldehyde-3-phosphate dehydrogenase. This study has provided new evidences for the prebiotic effects of Pu-erh tea.