Project description:Invasive fungal infections are important healthcare associated disease worldwide especially in intensive care units More recently, Candida auris a multidrug and potentially pan-resistant species has globally emerged as a new nosocomial pathogen, which has been already reported from at least 50 countries on six continents. Clinical studies showed that previously well-defined phylogenetic C. auris clades display significant differences regarding their pathogenicity, virulence, metabolism and susceptibility profile to traditional antifungal therapies. Based on epidemiological data, isolates belonging to the South Asian clade show the highest ratio of resistance to fluconazole (97%), amphotericin B (47%) and this clade involves the highest number of multidrug resistant isolates (45%), which compromise the efficacy of applied antifungal therapy. In the past decade, a new broad-spectrum antifungal drug, isavuconazole (ISA), has been introduced into clinical practice. ISA is primarily approved for the treatment of invasive aspergillosis and mucormycosis, and currently, there are no available recommendations for the therapy of invasive Candida infections. In our previous study, we reported different ISA susceptibility profiles between isolates belonging to South Asian lineage. However, the global transcriptional - even isolate specific - response remained unresolved. Therefore, our study aimed to reveal those molecular events, which are associated with ISA exposure using high throughput RNA sequencing (RNAseq).
Project description:In this study the transcriptomes of Acinetobacter baumannii strains ATCC 17978 and 17978hm were compared. Strain 17978hm is a hns knockout derivative of strain ATCC 17978. Strain 17978hm displays a hyper-motile phenotype on semi-solid Mueller-Hinton (MH) media (0.25% agar). ATCC 17978 and 17978hm from an 37C overnight culture were transferred to the centre of the semi-solid MH plate and incubated at 37C for 8 hours. Only 17978hm cells displayed a motile phenotype and covered the complete surface of the plate. These motile 17978hm cells and the non-motile wild-type ATCC 17978 cells were harvested and RNA was isolated. The comparative transcriptome analysis was performed using the FairPlay labeling kit and a custom made Agilent MicroArray with probes designed to coding regions of the ATCC 17978 genome. The data was analyzed using Agilent GeneSpring GX9 and the significance analysis of microarray MS Excel add-on.