Project description:Glioblastoma stem cells (GSCs) are thought to be the source of tumor growth and therapy resistance. Core biosies that are used to generate GSC cultures are ususally taken from one part of the tumor and are thus unlikely to represent intra-tumoral heterogeneity. This study shows that the ultrasonic aspirates (UA), that are usually considered as a biological waste, can be used as a reliable source of GSCs. Furthermore the UA aspirates seem to be capturing the tumorigenic signature better than the traditional biopsies.
Project description:Adult neural progenitor cells (aNPCs) are a potential source for cell based therapy for neurodegenerative diseases and traumatic brain injuries. We show that the ultrasonic aspirate samples that are typically considered as a waste after surgery are a great source for aHNPCs.
Project description:Dendritic cell (DC)-based immunotherapy against glioblastoma multiforme is a novel treatment hope. Glioblastoma stem-like cells are, however, potentially causing immunoresistance. Glioblastoma cells cultured as gliomaspheres show a stem-like phenotype as opposed to classical adherent culture. They are thus a promising antigen source to specifically target glioblastoma stem-like cells via DC therapy and so overcome immunoresistance. Here we study the importance of gliomasphere-specific. Methodologically, we used 7 gliomaspheres, 3 of them patient-derived, as model system. Gliomasphere-specific protein expression was explored via quantitative proteomics.
Project description:The paper describes a model of glioblastoma.
Created by COPASI 4.25 (Build 207)
This model is described in the article:
Modeling the Treatment of Glioblastoma Multiforme and Cancer Stem Cells with Ordinary Differential Equations
Kristen Abernathy and Jeremy Burke BMC
Computational and Mathematical Methods in Medicine Volume 2016, Article ID 1239861, 11 pages
Abstract:
Despite improvements in cancer therapy and treatments, tumor recurrence is a common event in cancer patients. One explanation of recurrence is that cancer therapy focuses on treatment of tumor cells and does not eradicate cancer stem cells (CSCs). CSCs are postulated to behave similar to normal stem cells in that their role is to maintain homeostasis. That is, when the population of tumor cells is reduced or depleted by treatment, CSCs will repopulate the tumor, causing recurrence. In this paper, we study the application of the CSC Hypothesis to the treatment of glioblastoma multiforme by immunotherapy. We extend the work of Kogan et al. (2008) to incorporate the dynamics of CSCs, prove the existence of a recurrence state, and provide an analysis of possible cancerous states and their dependence on treatment levels.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models .
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide.
Please refer to CC0 Public Domain Dedication for more information.
Project description:The invasive nature of glioblastoma (GBM) represents a major clinical challenge contributing to poor outcomes. Invasion of GBM into healthy tissue restricts therapeutic access and surgical resection. Therefore, effective anti-invasive strategies of GBM cells can be key to increase the efficacy of chemotherapy against this devastating disease. As cancer stem or initiating cells are considered to retain the tumorigenic potential in a number of tumors including glioblastoma, we studied the invasion capabilities of glioblastoma initiating cells (GICs) that were isolated from the peritumoral (PT) tissue, which surrounds the tumor mass (TM) and remains in the brain after tumor removal. We found that PT-GICs are less proliferative but more invasive compared to TM-GICs. Gene expression arrays of cells derived from the tumor mass and the peritumoral tissue of three glioblastoma cases
Project description:Genome wide DNA methylation profiling of glioblastoma stem-like-cells was performed to detect changes during long time culturing. The Illumina Infinium MethylationEPIC Kit array was used to obtain DNA methylation profiles across approximately 850,000 CpGs. The samples are seven cell lines containing an early passage (x+0) and an later passage (x+30).