Project description:The Baculovirus Expression Vector System (BEVS) is highly valued in vaccine development, protein engineering, and drug metabolism research due to its biosafety, operational convenience, rapid scalability, and capacity for self-assembling virus-like particles. However, increasing cell density at the time of inoculation severely compromises the production capacity of BEVS, resulting in the “cell density effect”. This study aimed to explore the mechanisms of the cell density effect through time-series analysis of transcriptomes and proteomes, with the goal of overcoming or alleviating the decline in productivity caused by increased cell density. The dynamic analysis of the omics of High Five cells under different CCI (cell density at infection) conditions showed that the impact of the “cell density effect” increased over time, particularly affecting genetic information processing, error repair, protein expression regulation, and material energy metabolism. Omics analysis of the growth stage of High Five cells showed that after 36 h of culture (cell density of about 1×106 cells/mL), the expression of ribosome-related proteins decreased, resulting in a rapid decrease in protein synthesis capacity, which was a key indicator of cell aging. Senescence verification experiments showed that cells began to show obvious early aging characteristics after 36 h, resulting in a decrease in the host cell’s ability to resist stress. Overexpression and siRNA inhibition studies showed that the ndufa12 gene was a potential regulatory target for restricting the “cell density effect”. Our results suggested that stress-induced premature senescence in High Five cell cultures, resulting in reduced energy metabolism and protein synthesis capabilities, was a critical factor contributing to cell density effects, and ultimately affecting virus production. In conclusion, this study provided new insights into managing virus production limitations due to cell density effects and offered innovative strategies to mitigate the adverse effects of cellular aging in biomanufacturing technologies.
Project description:Human somatic cells may contain up to seven members of the histone H1 family contributing to chromatin compaction and regulation of nuclear processes, apparently with certain subtype specificities. Previous studies in T47D breast cancer cells determined that H1 variants are distributed in a variant-specific manner throughout the genome. In particular, we observed a clear enrichment of linker histone H1X within SVA and SINE repetitive sequences. To extend our results and study whether H1X is universally enriched within these types of repeats, we have performed ChIP-Seq of endogenous H1X in five additional cancer cell lines (HeLa, MCF-7, SK-N-SH, HCT-116, and SK-MEL-147).
Project description:Gut microbiota has become an integral component of the host, and received increasing attention. However, for many domestic animals, information on the microbiota is insufficient and more effort should be exerted to manage the gastrointestinal bacterial community. Understanding the factors that influence the composition of microbial community in the host alimentary canal is essential to manage or improve the microbial community composition. In the present study, 16S rRNA gene sequence-based comparisons of the bacterial communities in the grass carp (Ctenopharyngodon idellus) intestinal contents and fish culture-associated environments are performed. The results show that the fish intestinal microbiota harbors many cellulose-decomposing bacteria, including sequences related to Anoxybacillus, Leuconostoc, Clostridium, Actinomyces, and Citrobacter. The most abundant bacterial operational taxonomic units (OTUs) in the grass carp intestinal content are those related to feed digestion. In addition, the potential pathogens and probiotics are important members of the intestinal microbiota. Further analyses show that grass carp intestine holds a core microbiota composed of Proteobacteria, Firmicutes, and Actinobacteria. The comparison analyses reveal that the bacterial community in the intestinal contents is most similar to those from the culture water and sediment. However, feed also plays significant influence on the composition of gut microbiota.
Project description:Longitudinal zonation of epithelial cells across the mammalian small intestine defines five domains of nutrient absorption. We then performed gene expression profiling analysis using data obtained from RNA-seq of 4 different cells at two time points.
Project description:Analysis of gingival crevicular fluid (GCF) samples may give information of the identity of unattached (planktonic) subgingival bacteria, the 35 forefront candidates for systemic dispersal via ulcerated periodontal pocket epithelium. Our study represents the first one targeting the identity of bacteria in gingival crevicular fluid. Methodology/Principal findings: We determined bacterial species diversity in GCF samples of a group of periodontitis patients and delineated contributing bacterial and host-associated factors. Subgingival paper point (PP) samples from the same sites were taken for comparison. After DNA extraction, 16S rRNA genes were PCR amplified and DNA-DNA hybridization was performed using a microarray for over 300 bacterial species or groups. Altogether 133 species from 41 genera and 8 phyla 45 were detected with 9 to 62 and 18 to 64 species in GCF and PP samples, respectively, 46 per patient. Projection to latent structures by means of partial least squares (PLS) was applied to the multivariate data analysis. PLS regression analysis showed that species of genera including Campylobacter, Selenomonas, Porphyromonas, Catonella, Tannerella, Dialister, Peptostreptococcus, Streptococcus and Eubacterium had significant positive correlations and the number of teeth with low-grade attachment loss a significant negative correlation to species diversity in GCF samples. OPLS/O2PLS discriminant analysis revealed significant positive correlations to GCF sample group membership for species of genera Campylobacter, Leptotrichia, Prevotella, Dialister, Tannerella, Haemophilus, Fusobacterium, Eubacterium, and Actinomyces. Conclusions/Significance: Among a variety of detected species those traditionally classified as Gram-negative anaerobes growing in mature subgingival biofilms were the main predictors for species diversity in GCF samples as well as responsible for distinguishing GCF samples from PP samples. GCF bacteria may provide new prospects for studying dynamic properties of subgingival biofilms. The microbial profiles of GCF and subgingival plaque were analyzed from 17 subjects with periodontal disease.