Project description:To identify genes that mediate lung metastasis in breast cancer, we compared expression profiles of metastatic versus non-metastatic mammary tumors in MMTV-Wnt1 transgenic mice. A subset of biologically relevant genes with statistically significant changes was selected for validation. These genes include Alox15, Ptn, Ror2, Sox9, Jag2 and Runx2. These genes encode proteins that play important roles in the immune and inflammatory responses as well as osteogenesis and skeletal morphogenesis.
Project description:We have previously shown that withdrawal of folic acid led to metabolic reprogramming and a less aggressive phenotype in a cell model of triple-negative breast cancer (TNBC). Herein, we evaluate the effects of folic acid withdrawal on transcriptomic profiles in these cells. Murine cell lines were originally derived from a pool of spontaneous mammary tumors grown in MMTV-Wnt1 transgenic mice. Based on their differential molecular characteristics and metastatic potential, these cell lines were previously characterized as non-metastatic epithelial (E-Wnt), non-metastatic mesenchymal (M-Wnt) and metastatic mesenchymal (metM-Wntliver) cells.
Project description:MicroRNAs (miRNAs) are small, non-coding, endogenous RNAs involved in many human diseases including breast cancer. miRNA expression profiling of human breast cancers has identified miRNAs related to the clinical diversity of the disease and potentially provides novel diagnostic and prognostic tools for breast cancer therapy. In order to further understand the roles of miRNAs in association with oncogenic drivers and in specifying sub-types of breast cancer, we performed miRNAexpression profiling on mammary tumors from eight well-characterized genetically -engineered Mouse (GEM) models of human breast cancer including MMTV–H-Ras, -Her2/neu, -c-Myc, -PymT, –Wnt1 and C3(1)/SV40 T/t-antigen transgenic mice, BRCA1fl/fl;p53+/-;MMTV-cre and the p53fl/fl ;MMTV-cre transplant model. miRNA expression data for 41 mouse primary mammary tumors and 5 mouse normal mammary glands
Project description:MicroRNAs (miRNAs) are small, non-coding, endogenous RNAs involved in many human diseases including breast cancer. miRNA expression profiling of human breast cancers has identified miRNAs related to the clinical diversity of the disease and potentially provides novel diagnostic and prognostic tools for breast cancer therapy. In order to further understand the roles of miRNAs in association with oncogenic drivers and in specifying sub-types of breast cancer, we performed miRNAexpression profiling on mammary tumors from eight well-characterized genetically -engineered Mouse (GEM) models of human breast cancer including MMTV–H-Ras, -Her2/neu, -c-Myc, -PymT, –Wnt1 and C3(1)/SV40 T/t-antigen transgenic mice, BRCA1fl/fl;p53+/-;MMTV-cre and the p53fl/fl ;MMTV-cre transplant model. As supplementary data miRNA expression data for 3 mouse primary mammary tumors and 8 mouse normal mammary glands from different mouse strains
Project description:Variant analysis from whole exome sequencing (WES), performed on primary tumorigenic cells obtained from (1) a GEMM of metastatic TNBC mice model overexpressing both human Prune-1 and Wnt1 under the control of Mouse Mammary Tumor Virus MMTV promoter in mammary gland (i.e., MMTV-Prune-1/Wnt1); (2) a GEMM of TNBC mice model overexpressing Wnt1 under the control of MMTV promoter in mammary gland (i.e., MMTV-Wnt1).
Project description:The stem cell hierarchy of normal tissues has been studied extensively for cancer origin, but the stem cell hierarchy of precancerous lesions and its contribution to tumorigenesis remain elusive. Here, we report that in MMTV-Wnt1 transgenic mice, mammary precancerous lesions harbor both keratin 6a+ precancerous stem cells (pcSC) and more differentiated whey acidic protein (WAP)+ cells. The goal of these data was to understand expression differences between different subsets of cells in mammary precancerous early lesions. There are two cell lines Krt6a+ cells (stem cells) and WAP+ cell (more differentiated cells) from hyperplastic mammary glands in MMTV-Wnt1 mice.
Project description:The goal of the experiment was to demonstrate if the overexpression of human-Prune-1 in Triple Negative breast cancer cells induces M2-polarization of macrophages in vitro. For this purpose, murine primary cells from breast tumor developed by Genetically Engineered Mouse Models (GEMMs) of TNBC (i.e., MMTV-Wnt1) and metastatic TNBC overexpressing both human Prune-1 and Wnt1 in mammary gland (i.e., MMTV-Prune-1/Wnt1) were obtained. Conditioned media were collected from these primary cells (1x106 cells) after 24 hours. Murine macrophages (J774A.1 and Raw264.7; 1x106) were starved for six hours and then grown for 48 hours in those conditioned media collected from MMTV-Wnt1 and MMTV-Prune-1/Wnt1 cells. Untreated macrophages were used as negative control for the experiment.
Project description:MicroRNAs (miRNAs) are small, non-coding, endogenous RNAs involved in many human diseases including breast cancer. miRNA expression profiling of human breast cancers has identified miRNAs related to the clinical diversity of the disease and potentially provides novel diagnostic and prognostic tools for breast cancer therapy. In order to further understand the roles of miRNAs in association with oncogenic drivers and in specifying sub-types of breast cancer, we performed miRNAexpression profiling on mammary tumors from eight well-characterized genetically -engineered Mouse (GEM) models of human breast cancer including MMTV–H-Ras, -Her2/neu, -c-Myc, -PymT, –Wnt1 and C3(1)/SV40 T/t-antigen transgenic mice, BRCA1fl/fl;p53+/-;MMTV-cre and the p53fl/fl ;MMTV-cre transplant model. As supplementary data
Project description:MicroRNAs (miRNAs) are small, non-coding, endogenous RNAs involved in many human diseases including breast cancer. miRNA expression profiling of human breast cancers has identified miRNAs related to the clinical diversity of the disease and potentially provides novel diagnostic and prognostic tools for breast cancer therapy. In order to further understand the roles of miRNAs in association with oncogenic drivers and in specifying sub-types of breast cancer, we performed miRNAexpression profiling on mammary tumors from eight well-characterized genetically -engineered Mouse (GEM) models of human breast cancer including MMTV–H-Ras, -Her2/neu, -c-Myc, -PymT, –Wnt1 and C3(1)/SV40 T/t-antigen transgenic mice, BRCA1fl/fl;p53+/-;MMTV-cre and the p53fl/fl ;MMTV-cre transplant model.