Project description:Uveal melanoma (UM) with an inflammatory phenotype, characterized by infiltrating leukocytes and increased human leukocyte antigen (HLA) expression, carry an increased risk of death due to metastases. These tumors shoud be ideal for T-cell based therapies, yet it is not clear why prognostically-infaust tumors have a high HLA expression. We set out to determine whether the level of HLA molecules in UM is associated with other genetic factors, HLA transcriptional regulators, or microenvironmental factors. 28 enucleated UM were used to study HLA class I and II expression, and several regulators of HLA by immunohistochemistry, PCR microarray, qPCR and chromosome SNP-array. Fresh tumor samples of eight primary UM and four metastases were compared to their corresponding xenograft in SCID mice, using a PCR microarray and SNP array. Increased expression levels of HLA class I and II showed no dosage effect of chromosome 6p, but, as expected, were associated with monosomy of chromosome 3. Increased HLA class I and II protein levels were positively associated with their gene expression and with raised levels of the peptide-loading gene TAP1, and HLA transcriptional regulators IRF1, IRF8, CIITA, and NLRC5, revealing a higher transcriptional activity in prognostically-bad tumors. Implantation of fresh human tumor samples into SCID mice led to a loss of infiltrating leukocytes, and to a decreased expression of HLA class I and II genes , and their regulators. Our data provides evidence for a proper functioning HLA regulatory system in UM, offering a target for T-cell based therapies. NB: Here we show the PCR microarray (Illumina array).
Project description:Metastatic uveal melanoma generally responds poorly to immunotherapy. The aim here was to sequence tumor-infiltrating lymphocytes from uveal melanoma metastases to study their phenotypes and T-cell receptor (TCR) clonotypes. We performed paired single-cell transcriptome and TCR sequencing using the 10x Genomics platform of IL2-expanded tumor-infiltrating lymphocytes from 7 liver and 1 subcutaneous metastasis.
Project description:Karyotyping by SNP array of primary uveal melanoma samples, uveal melanoma cell lines and normal controls The Human660WQuad v1.0 DNA Analysis Bead Chip and kit were used for high resolution molecular karyotyping of DNA isolated from snap-frozen primary uveal melanoma tissue isolated from enucleated eyes.
Project description:Uveal melanoma is an aggressive cancer that metastasizes to the liver in about half of patients, being at that time almost always fatal. Identification of patients at high risk of metastases may provide indication for a frequent follow-up for early detection of metastases and treatment. The analysis of the gene expression profiling of primary human uveal melanomas showed high expression of SDCBP (encoding for syndecan-binding protein-1 or syntenin-1), which appeared higher in patients with recurrence, whereas expression of syndecans was lower and unrelated to progression. Moreover, we found that high expression of SDCBP gene was related to metastatic progression in two additional independent dataset of uveal melanoma patients. More importantly, immunohistochemistry showed that high expression of syntenin-1 protein in primary tumours was significantly related to metastatic recurrence in our cohort of patients. Syntenin-1 expression was confirmed by RT-PCR, immunofluorescence and immunohistochemistry in cultured uveal melanoma cells or primary tumours. A pseudo-metastatic model of uveal melanoma to the liver was developed in NOD/SCID/IL2R null mice and the study of syntenin-1 expression in primary and metastatic lesions revealed higher syntenin-1 expression in metastases. The inhibition of SDCBP expression by siRNA impaired the ability of uveal melanoma cells to migrate in a woundâhealing assay. These results suggest that SDCBP is involved in uveal melanoma progression and that it represents a candidate molecular marker of metastases and a potential therapeutic target. Gene expression profiles of 29 unique samples from uveal melanoma patients were measured.
Project description:Gene expression in primary uveal melanoma cells and normal cell controls The HumanHT-12 v3 gene expression microarray (Illumina) was used to analyze RNA isolated from snap-frozen primary uveal melanoma tissue isolated from enucleated eyes and from normal cell controls.