Project description:This study compared the genome of Streptomyces rimosus rimosus against that of Streptomyces coelicolor. It also compared 4 strains with changes in oxytetracycline production and derived from G7, the type strain, against G7. Keywords: Comparative genomic hybridization
Project description:The RNA sequencing approach was utilized to carry out a comparative transcriptome analysis between Streptomyces hygroscopicus 5008 wild-type and a genetically engineered strain. The A-factor-like cascade play an important role in the regulation of validamycin biosynthesis by Streptomyces hygroscopicus 5008, and the pleiotropic regulator AdpA-H may positively regulate the transcription of gene cluster for the biosynthesis. shbR1 and shbR3 as the A-factor receptor homolog genes, could repress the transcription of AdpA-H. By tandem deletions of these genes, the production and productivity of validamcyin was significantly enhanced. To explore the effects of the shbR1/R3 double deletion of the overall cellular metabolism, the RNA sequencing approach was utilized to carry out a comparative transcriptome analysis between wild-type and shbR1/shbR3 double mutant (genetically engineered strain).
Project description:To identify unique gene expression in higher antibiotics producing Streptomyces coelicolor strain, non-producer M1146 and the derivative strain M1146+ACT (M1146 with actinorhodin biosynthetic genes cluster) was choosen for comparative transcriptome analysis. The genes with different gene expression might be key genes important for antibiotics production.
Project description:To discover novel regulators that influence avermectin biosynthesis, comparative transcriptome analysis between wild-type strain ATCC31267 and avermectin overproducing strain 76-02-e were performed to reveal some differentially expressed genes.
Project description:Amino acid-based surfactants are valuable compounds for cosmetic formulations. The chemical synthesis of acyl amino acids is conventionally performed by the Schotten-Baumann reaction using fatty acyl chlorides, but aminoacylases have also been investigated for use in biocatalytic synthesis with free fatty acids. Aminoacylases and their properties are diverse; they belong to different peptidase families and show differences in substrate specificity and biocatalytic potential. Bacterial aminoacylases capable of synthesis have been isolated from Burkholderia, Mycolicibacterium, and Streptomyces. Although several proteases and peptidases from S. griseus have been described, no aminoacylases from this species have been identified yet. In this study, we investigated two novel enzymes produced by S. griseus DSM 40236T . We identified and cloned the respective genes and recombinantly expressed an α-aminoacylase (EC3.5.1.14), designated SgAA, and an ε-lysine acylase (EC3.5.1.17), designated SgELA, in S. lividans TK23. The purified aminoacylase SgAA was biochemically characterized, focusing on its hydrolytic activity to determine temperature- and pH optima and stabilities. The aminoacylase could hydrolyze various acetyl amino acids at the Nα -position with a broad specificity regarding the sidechain. Substrates with longer acyl chains, like lauroyl amino acids, were hydrolyzed to a lesser extent. Purified aminoacylase SgELA specific for the hydrolysis of Nε -acetyl-l-lysine was unstable and lost its enzymatic activity upon storage for a longer period but could initially be characterized. The pH optimum of SgELA was pH 8.0. While synthesis of acyl amino acids was not observed with SgELA, SgAA catalyzed the synthesis of lauroyl-methionine.