Project description:The transcription factor c-Myb plays a key role in human primary CD34+ hematopoietic progenitor cells (HPCs) lineage choice, by enhancing erythropoiesis at the expense of megakaryopoiesis. We previously demonstrated that c-Myb affects erythroid versus megakaryocyte lineage decision in part by transactivating KLF1 and LMO2 expression. To further unravel the molecular mechanisms through which c-myb affects lineage fate decision, we profiled the miRNA and mRNA changes in myb-silenced CD34+ HPCs. The integrative analysis of miRNA/mRNA expression changes upon c-myb silencing in human CD34+ HPCs highlighted a set of 19 miRNA with 150 anticorrelated putative target mRNAs. Among the miRNAs downregulated in myb-silenced progenitors with the highest number of predicted target mRNAs, we selected hsa-miR-486-3p based on the in vitro effects of its overexpression on HPCs commitment. Indeed, morphological and flow cytometric analyses after liquid culture showed that hsa-miR-486-3p overexpression in HPCs enhanced erythroid and granulocyte differentiation while restraining megakaryocyte and macrophage differentiation. Moreover, collagen-based clonogenic assay demonstrated a strong impairement megakaryocyte commitment upon hsa-miR-486-3p overexpression in CD34+ cells. Moreover, in order to identify the mRNA target through which hsa-miR-486-3p affects lineage fate decision, we profiled the mRNA changes in mimic transfected CD34+ HPC by means of Affymetrix GeneAtlas U219 strip array. Gene expression profiling of hsa-miR-486-3p overexpressing CD34+ cells enabled us to identify a set of 8 genes downregulated and computationally predicted, putative hsa-miR-486-3p targets. Among them, we selected c-maf transcript as upregulated upon myb silencing. Worth of note, c-maf silencing in CD34+ progenitor cells was able to reverse the affects of myb silencing on erythroid versus megakaryocyte lineage choice. Integrative miRNA/mRNA analysis highlighted a set of miRNAs and anticorrelated putative target mRNAs modulated upon myb silencing, therefore potential players in myb-driven HPCs lineage choice. Among them, we demonstrated the hsa-miR-486-3p/c-maf pair as partially contributing to the effects of myb on HPCs commitment. Therefore, our data collectively identified myb-driven hsa-miR-486-3p upregulation and subsequent c-maf downregulation as a new molecular mechanism through which cMyb favours erythropoiesis while restraining megakaryopoiesis. Gene expression profile (GEP) was performed on total RNA derived from three independent experiments at 24h after the last nucleofection.
Project description:Primary Myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hyperplastic megakaryopoiesis and myelofibrosis. Through a gene expression profile (GEP) study we recently highlighted the MAF upregulation in PMF versus healthy donor (HD) CD34+ hematopoietic progenitor cells (HPCs). To shed some light into the role of MAF in PMF pathogenesis, here we unravelled the effects of the overexpression of MAF in HPCs forcing its expression in HPCs. We showed that MAF overexpression favours the megakaryocyte and monocyte/macrophage commitment and leads to the abnormal expression of genes coding for proinflammatory and profibrotic mediators. Due to the key role of the above-mentioned processes in PMF pathogenesis, we selected a subset of genes coding for secreted molecules for further validation by quantitative enzyme-linked immunoassays. Noteworthy, our data unveiled a causal connection between the upregulation of MAF and the increased plasma levels of key proinflammatory/profibrotic mediators (IL8, CCL2, PLAUR and MMP9) in PMF patients. Similarly, the upregulation of MAF was responsible for the deranged expression of LGALS3 and SPP1, that are profibrotic mediators increased in PMF patients compared with HDs.
Project description:The transcription factor cMyb plays a key role in human primary CD34+ hematopoietic progenitor cells (HPCs) lineage choice, by enhancing erythropoiesis at the expense of megakaryopoiesis. We previously demonstrated that cMyb affects erythroid versus megakaryocyte lineage decision in part by transactivating KLF1 and LMO2 expression. To further unravel the molecular mechanisms through which cmyb affects lineage fate decision, we profiled the miRNA and mRNA changes in myb-silenced CD34+ HPCs. mRNA and miRNA expression for each sample were profiled by Affymetrix GeneAtlas U219 strip array and Exiqon Human miRNome PCR Panel, respectively. miRNA/mRNA data were integrated by Ingenuity Pathway Analysis. The integrative analysis of miRNA/mRNA expression changes upon c-myb silencing in human CD34+ HPCs highlighted a set of 19 miRNA with 150 anticorrelated putative target mRNAs. Among the miRNAs downregulated in myb-silenced progenitors with the highest number of predicted target mRNAs, we selected hsa-miR-486-3p based on the in vitro effects of its overexpression on HPCs commitment. Indeed, morphological and flow cytometric analyses after liquid culture showed that hsa-miR-486-3p overexpression in HPCs enhanced erythroid and granulocyte differentiation while restraining megakaryocyte and macrophage differentiation. Moreover, collagen-based clonogenic assay demonstrated a strong impairement megakaryocyte commitment upon hsa-miR-486-3p overexpression in CD34+ cells. Gene expression profiling of hsa-miR-486-3p overexpressing CD34+ cells enabled us to identify a set of 8 genes downregulated and computationally predicted, putative hsa-miR-486-3p targets. Among them, we selected c-maf transcript as upregulated upon myb silencing. Worth of note, c-maf silencing in CD34+ progenitor cells was able to reverse the affects of myb silencing on erythroid versus megakaryocyte lineage choice. Integrative miRNA/mRNA analysis highlighted a set of miRNAs and anticorrelated putative target mRNAs modulated upon myb silencing, therefore potential players in myb-driven HPCs lineage choice. Among them, we demonstrated the hsa-miR-486-3p/c-maf pair as partially contributing to the effects of myb on HPCs commitment. Therefore, our data collectively identified myb-driven hsa-miR-486-3p upregulation and subsequent c-maf downregulation as a new molecular mechanism through which cMyb favours erythropoiesis while restraining megakaryopoiesis. RNA from CD34+ HPCs transfected with c-myb-targeting/non targeting control (NegCTR) synthetic siRNAs was collected 24 hours post-Nucleofection for a set of 5 independent experiments.
Project description:The transcription factor cMyb plays a key role in human primary CD34+ hematopoietic progenitor cells (HPCs) lineage choice, by enhancing erythropoiesis at the expense of megakaryopoiesis. We previously demonstrated that cMyb affects erythroid versus megakaryocyte lineage decision in part by transactivating KLF1 and LMO2 expression. To further unravel the molecular mechanisms through which cmyb affects lineage fate decision, we profiled the miRNA and mRNA changes in myb-silenced CD34+ HPCs. mRNA and miRNA expression for each sample were profiled by Affymetrix GeneAtlas U219 strip array and Exiqon Human miRNome PCR Panel, respectively. miRNA/mRNA data were integrated by Ingenuity Pathway Analysis. The integrative analysis of miRNA/mRNA expression changes upon c-myb silencing in human CD34+ HPCs highlighted a set of 19 miRNA with 150 anticorrelated putative target mRNAs. Among the miRNAs downregulated in myb-silenced progenitors with the highest number of predicted target mRNAs, we selected hsa-miR-486-3p based on the in vitro effects of its overexpression on HPCs commitment. Indeed, morphological and flow cytometric analyses after liquid culture showed that hsa-miR-486-3p overexpression in HPCs enhanced erythroid and granulocyte differentiation while restraining megakaryocyte and macrophage differentiation. Moreover, collagen-based clonogenic assay demonstrated a strong impairement megakaryocyte commitment upon hsa-miR-486-3p overexpression in CD34+ cells. Gene expression profiling of hsa-miR-486-3p overexpressing CD34+ cells enabled us to identify a set of 8 genes downregulated and computationally predicted, putative hsa-miR-486-3p targets. Among them, we selected c-maf transcript as upregulated upon myb silencing. Worth of note, c-maf silencing in CD34+ progenitor cells was able to reverse the affects of myb silencing on erythroid versus megakaryocyte lineage choice. Integrative miRNA/mRNA analysis highlighted a set of miRNAs and anticorrelated putative target mRNAs modulated upon myb silencing, therefore potential players in myb-driven HPCs lineage choice. Among them, we demonstrated the hsa-miR-486-3p/c-maf pair as partially contributing to the effects of myb on HPCs commitment. Therefore, our data collectively identified myb-driven hsa-miR-486-3p upregulation and subsequent c-maf downregulation as a new molecular mechanism through which cMyb favours erythropoiesis while restraining megakaryopoiesis. RNA from CD34+ HPCs transfected once/twice/3 times with c-myb-targeting/non targeting control siRNAs was collected for a set of 5 independent experiments.
Project description:The transcription factor c-Myb plays a key role in human primary CD34+ hematopoietic progenitor cells (HPCs) lineage choice, by enhancing erythropoiesis at the expense of megakaryopoiesis. We previously demonstrated that c-Myb affects erythroid versus megakaryocyte lineage decision in part by transactivating KLF1 and LMO2 expression. To further unravel the molecular mechanisms through which c-myb affects lineage fate decision, we profiled the miRNA and mRNA changes in myb-silenced CD34+ HPCs. The integrative analysis of miRNA/mRNA expression changes upon c-myb silencing in human CD34+ HPCs highlighted a set of 19 miRNA with 150 anticorrelated putative target mRNAs. Among the miRNAs downregulated in myb-silenced progenitors with the highest number of predicted target mRNAs, we selected hsa-miR-486-3p based on the in vitro effects of its overexpression on HPCs commitment. Indeed, morphological and flow cytometric analyses after liquid culture showed that hsa-miR-486-3p overexpression in HPCs enhanced erythroid and granulocyte differentiation while restraining megakaryocyte and macrophage differentiation. Moreover, collagen-based clonogenic assay demonstrated a strong impairement megakaryocyte commitment upon hsa-miR-486-3p overexpression in CD34+ cells. Moreover, in order to identify the mRNA target through which hsa-miR-486-3p affects lineage fate decision, we profiled the mRNA changes in mimic transfected CD34+ HPC by means of Affymetrix GeneAtlas U219 strip array. Gene expression profiling of hsa-miR-486-3p overexpressing CD34+ cells enabled us to identify a set of 8 genes downregulated and computationally predicted, putative hsa-miR-486-3p targets. Among them, we selected c-maf transcript as upregulated upon myb silencing. Worth of note, c-maf silencing in CD34+ progenitor cells was able to reverse the affects of myb silencing on erythroid versus megakaryocyte lineage choice. Integrative miRNA/mRNA analysis highlighted a set of miRNAs and anticorrelated putative target mRNAs modulated upon myb silencing, therefore potential players in myb-driven HPCs lineage choice. Among them, we demonstrated the hsa-miR-486-3p/c-maf pair as partially contributing to the effects of myb on HPCs commitment. Therefore, our data collectively identified myb-driven hsa-miR-486-3p upregulation and subsequent c-maf downregulation as a new molecular mechanism through which cMyb favours erythropoiesis while restraining megakaryopoiesis.
Project description:The transcription factor cMyb plays a key role in human primary CD34+ hematopoietic progenitor cells (HPCs) lineage choice, by enhancing erythropoiesis at the expense of megakaryopoiesis. We previously demonstrated that cMyb affects erythroid versus megakaryocyte lineage decision in part by transactivating KLF1 and LMO2 expression. To further unravel the molecular mechanisms through which cmyb affects lineage fate decision, we profiled the miRNA and mRNA changes in myb-silenced CD34+ HPCs. mRNA and miRNA expression for each sample were profiled by Affymetrix GeneAtlas U219 strip array and Exiqon Human miRNome PCR Panel, respectively. miRNA/mRNA data were integrated by Ingenuity Pathway Analysis. The integrative analysis of miRNA/mRNA expression changes upon c-myb silencing in human CD34+ HPCs highlighted a set of 19 miRNA with 150 anticorrelated putative target mRNAs. Among the miRNAs downregulated in myb-silenced progenitors with the highest number of predicted target mRNAs, we selected hsa-miR-486-3p based on the in vitro effects of its overexpression on HPCs commitment. Indeed, morphological and flow cytometric analyses after liquid culture showed that hsa-miR-486-3p overexpression in HPCs enhanced erythroid and granulocyte differentiation while restraining megakaryocyte and macrophage differentiation. Moreover, collagen-based clonogenic assay demonstrated a strong impairement megakaryocyte commitment upon hsa-miR-486-3p overexpression in CD34+ cells. Gene expression profiling of hsa-miR-486-3p overexpressing CD34+ cells enabled us to identify a set of 8 genes downregulated and computationally predicted, putative hsa-miR-486-3p targets. Among them, we selected c-maf transcript as upregulated upon myb silencing. Worth of note, c-maf silencing in CD34+ progenitor cells was able to reverse the affects of myb silencing on erythroid versus megakaryocyte lineage choice. Integrative miRNA/mRNA analysis highlighted a set of miRNAs and anticorrelated putative target mRNAs modulated upon myb silencing, therefore potential players in myb-driven HPCs lineage choice. Among them, we demonstrated the hsa-miR-486-3p/c-maf pair as partially contributing to the effects of myb on HPCs commitment. Therefore, our data collectively identified myb-driven hsa-miR-486-3p upregulation and subsequent c-maf downregulation as a new molecular mechanism through which cMyb favours erythropoiesis while restraining megakaryopoiesis.
Project description:The transcription factor cMyb plays a key role in human primary CD34+ hematopoietic progenitor cells (HPCs) lineage choice, by enhancing erythropoiesis at the expense of megakaryopoiesis. We previously demonstrated that cMyb affects erythroid versus megakaryocyte lineage decision in part by transactivating KLF1 and LMO2 expression. To further unravel the molecular mechanisms through which cmyb affects lineage fate decision, we profiled the miRNA and mRNA changes in myb-silenced CD34+ HPCs. mRNA and miRNA expression for each sample were profiled by Affymetrix GeneAtlas U219 strip array and Exiqon Human miRNome PCR Panel, respectively. miRNA/mRNA data were integrated by Ingenuity Pathway Analysis. The integrative analysis of miRNA/mRNA expression changes upon c-myb silencing in human CD34+ HPCs highlighted a set of 19 miRNA with 150 anticorrelated putative target mRNAs. Among the miRNAs downregulated in myb-silenced progenitors with the highest number of predicted target mRNAs, we selected hsa-miR-486-3p based on the in vitro effects of its overexpression on HPCs commitment. Indeed, morphological and flow cytometric analyses after liquid culture showed that hsa-miR-486-3p overexpression in HPCs enhanced erythroid and granulocyte differentiation while restraining megakaryocyte and macrophage differentiation. Moreover, collagen-based clonogenic assay demonstrated a strong impairement megakaryocyte commitment upon hsa-miR-486-3p overexpression in CD34+ cells. Gene expression profiling of hsa-miR-486-3p overexpressing CD34+ cells enabled us to identify a set of 8 genes downregulated and computationally predicted, putative hsa-miR-486-3p targets. Among them, we selected c-maf transcript as upregulated upon myb silencing. Worth of note, c-maf silencing in CD34+ progenitor cells was able to reverse the affects of myb silencing on erythroid versus megakaryocyte lineage choice. Integrative miRNA/mRNA analysis highlighted a set of miRNAs and anticorrelated putative target mRNAs modulated upon myb silencing, therefore potential players in myb-driven HPCs lineage choice. Among them, we demonstrated the hsa-miR-486-3p/c-maf pair as partially contributing to the effects of myb on HPCs commitment. Therefore, our data collectively identified myb-driven hsa-miR-486-3p upregulation and subsequent c-maf downregulation as a new molecular mechanism through which cMyb favours erythropoiesis while restraining megakaryopoiesis.