Project description:Metabolism of anticancer drugs markedly affects their antitumor effects. The major goal of our study was to investigate associations of gene expression of enzymes metabolizing taxanes and/or anthracyclines with therapy response and survival of breast carcinoma patients The present study investigated differences in transcript levels of key modulators of oxysterol signaling pathway, including oxysterol receptors, metabolic enzymes and transporters in the groups of estrogen receptor positive (ER+) breast carcinomas in comparison to estrogen receptor negative (ER-) ones, and to control non-tumor tissues.
Project description:Metabolism of anticancer drugs markedly affects their antitumor effects. The major goal of our study was to investigate associations of gene expression of enzymes metabolizing taxanes and/or anthracyclines with therapy response and survival of breast carcinoma patients The present study investigated transcript levels of key modulators of oxysterol signaling pathway, including oxysterol receptors, metabolic enzymes and transporters in the group of hormone-receptor positive breast carcinoma patients to evaluated potential clinical significance of these genes.
Project description:Aromatase inhibitors are first-line postmenopausal agents for estrogen receptor alpha (ERa)-positive breast cancer. However, there is considerable response heterogeneity and women frequently relapse. Estrogen deprivation does not completely arrest ERa activity, and transactivation of the unliganded receptor may continue through cross-talk with growth factor pathways. In contrast with aromatase inhibitors, the selective ER downregulator fulvestrant also abrogates ligand-independent ERa activity. The benefit of fulvestrant as an alternative, combination, or sequential therapy to aromatase inhibitor has been reported, but molecular mechanisms underpinning its relative efficacy remain unclear and biomarkers for patient selection are lacking. This study demonstrates, for the first time, that the overall transcriptional response to fulvestrant is of greater magnitude than estrogen deprivation, consistent with its clinical efficacy and more complete blockade of estrogenic signaling. Using a robust integrative approach, we identify a subset of genes differentially affected by fulvestrant that comprises distinct biologic networks, correlates with antiproliferative response, and has potential utility as predictive biomarkers for fulvestrant. Global gene expression profiles from ERα-positive breast carcinomas before and during presurgical treatment with fulvestrant (n = 38) or anastrozole (n = 81), and corresponding in vitro models, were compared. Transcripts responding differently to fulvestrant and estrogen deprivation were identified and integrated using Gene Ontology, pathway and network analyses to evaluate their potential significance. --------------------------------- This represents the data for fulvestrant only
Project description:Oxysterols, oxidized derivatives of cholesterol, act in breast cancer (BC) as selective estrogen receptor modulators and affect cholesterol homeostasis, drug transport, nuclear and cell receptors, and other signaling proteins. Using overlapping data from patients with early-stage estrogen receptor-positive BC—high-coverage targeted DNA sequencing (99 patients, 113 genes), mRNA sequencing (67 patients), and full miRNome by microarrays (123 patients)—we describe complex mRNA-miRNA and miRNA-miRNA interaction (correlation) networks, with validation in two carefully curated public datasets (n=538 in total) and 11 databases. The ESR1-CH25H-INSIG1-ABCA9 axis was the most prominent, being interconnected through hsa-miR-125b-5p, but also hsa-miR-99a-5p, hsa-miR-100-5p, hsa miR 143 3p, hsa-199b-5p, hsa-miR-376a-3p, and hsa-miR-376c-3p. Mutations in SC5D, CYP46A1, and its functionally linked gene set were associated with multiple differentially expressed genes. STARD5 was upregulated in patients with positive lymph node status. High expression of miR-19b-3p was weakly associated with poor survival in multiple datasets. This is the first detailed dedicated study of interactions between DNA variation and mRNA expression of oxysterol-related genes, the miRNA transcriptome, and clinical factors in BC.
Project description:Oxysterols, oxidized derivatives of cholesterol, act in breast cancer (BC) as selective estrogen receptor modulators and affect cholesterol homeostasis, drug transport, nuclear and cell receptors, and other signaling proteins. Using overlapping data from patients with early-stage estrogen receptor-positive BC—high-coverage targeted DNA sequencing (99 patients, 113 genes), mRNA sequencing (67 patients), and full miRNome by microarrays (123 patients)—we describe complex mRNA-miRNA and miRNA-miRNA interaction (correlation) networks, with validation in two carefully curated public datasets (n=538 in total) and 11 databases. The ESR1-CH25H-INSIG1-ABCA9 axis was the most prominent, being interconnected through hsa-miR-125b-5p, but also hsa-miR-99a-5p, hsa-miR-100-5p, hsa miR 143 3p, hsa-199b-5p, hsa-miR-376a-3p, and hsa-miR-376c-3p. Mutations in SC5D, CYP46A1, and its functionally linked gene set were associated with multiple differentially expressed genes. STARD5 was upregulated in patients with positive lymph node status. High expression of miR-19b-3p was weakly associated with poor survival in multiple datasets. This is the first detailed dedicated study of interactions between DNA variation and mRNA expression of oxysterol-related genes, the miRNA transcriptome, and clinical factors in BC.
Project description:Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor positive breast cancer