Project description:To gain insight into how miR-142 deficit drives a BC-like transformation, we performed RNA-seq on bone marrow (BM) Lin-Sca-1+c-Kit+ cells (LSKs) harvested from normal miR-142+/+ (wt) and miR-142−/− (miR-142 KO) mice, as well as from leukemic miR-142+/+ BCR-ABL (CP CML) and miR-142−/− BCR-ABL (BC CML) mice, two weeks after BCR-ABL induction. We then performed gene expression profiling analysis using data obtained from RNA-seq of 24 samples of LSK cells from 4 mouse strains (KO vs WT, KO CML vs CML).
Project description:2 types of dendritic cells (DCs) can be generated in vitro in the presence of Flt3-L: CD4+ equivalent CD24- DCs and CD8+ equivalent CD24+ DCs. miR-142-/- mice show a severe defect in the generation of CD4+ equivalent CD24- DCs. To understand the underlying mechanism, RNA expression was analyzed by Affymetrix microarray from the 2 in vitro subtypes of DCs derived from miR-142+/+ and miR-142-/- bone marrow cells. We used microarrays to detail the global programme of gene expression in the presence or absence of miR-142 in in vitro derived DCs. Bone marrow cells from miR-142+/+ and miR-142-/- C57Bl/6 mice were isolated and incubated in the presence of Flt3-L for 8 days. in vitro derived wt and ko dendritic cells were devided into CD4+ and CD8+ equivalent DCs by FACS and sorted with a FACS-Aria. RNA was isolated and gene expression was investigated
Project description:ATAC-seq profiling of Nfat5 KO and wild type macrophages derived from bone marrow (primary cells), treated or not with Lipopolysaccharide (LPS).
Project description:High ploidy large cytoplasmic megakaryocytes (LCM) are critical negative regulators of hematopoietic stem cells (HSC) and are responsible for platelet formation. Using a mouse knockout model with normal megakaryocyte numbers but essentially devoid of LCM (MK-LCM KO), we demonstrated a pronounced increase in bone marrow HSC concurrent with endogenous mobilization and extramedullary hematopoiesis. When HSC isolated from a MK-LCM KO microenvironment were transplanted in lethally irradiated mice, the absence of LCM increased HSC in BM, blood and spleen. Severe thrombocytopenia was observed in animals with diminished LCM, although there was no change in megakaryocyte ploidy distribution. In contrast, WT HSC-generated LCM regulated a normal HSC pool and prevented thrombocytopenia. The present label-free quantitative LC-MSMS data was used to determine proteins that are differentially expressed in bone marrow cells of MK-LCM WT versus MK-LCM KO mice.