Project description:The integrity of the bacterial cell envelope is essential to sustain life by countering the high turgor pressure of the cell and providing a barrier against chemical insults. In Bacillus subtilis, synthesis of both peptidoglycan and wall teichoic acids requires a common C55 lipid carrier, undecaprenyl-pyrophosphate (UPP), to ferry precursors across the cytoplasmic membrane. The synthesis and recycling of UPP requires a phosphatase to generate the monophosphate form Und-P, which is the substrate for peptidoglycan and wall teichoic acid synthases. Using an optimized CRISPR-dCas9 based transcriptional repression system (CRISPRi), we demonstrate that B. subtilis requires either of two UPP phosphatases, UppP or BcrC, for viability. We show that a third predicted lipid phosphatase (YodM), with homology to diacylglycerol pyrophosphatases, can also support growth when overexpressed. Depletion of UPP phosphatase activity leads to morphological defects consistent with a failure of cell envelope synthesis and strongly activates the M-dependent cell envelope stress response, including bcrC which encodes one of the two UPP phosphatases. These results highlight the utility of an optimized CRISPRi system for investigation of synthetic lethal gene pairs, clarify the nature of the B. subtilis UPP-Pase enzymes, and provide further evidence linking the M regulon to cell envelope homeostasis pathways.
Project description:Bacterial cell envelope is the first and the major line of defense against threats from the environment. Because of its crucial roles in bacterial cell life, cell envelope is a prime target for numerous antibiotics. In this study, by treating Gram-positive model strain Bacillus subtilis with numbers of cell wall targeted antibiotics, we aimed to obtain a global comprehensive transcriptional profile of cell envelope stress response in B. subtilis via transcriptomic study using high-throughput RNA sequencing approach. This knowledge will then be subject to a series of comparative genomics analyses to get detailed information of the distribution and conservation of cell envelope stress-sensing regulatory systems in B. subtilis.
Project description:Identification of the specific WalR (YycF) binding regions on the B. subtilis chromosome during exponential and phosphate starvation growth phases. The data serves to extend the WalRK regulon in Bacillus subtilis and its role in cell wall metabolism, as well as implying a role in several other cellular processes.
Project description:The gene expression of Bacillus subtilis 168 showed 3 major patterns including early expression, transition expression and late expression We monitored Bacillus subtilis gene expression by using microarray at differernt time points
Project description:Abstract of associated manuscript: Daptomycin is the first of a new class of cyclic lipopeptide antibiotics used against multidrug-resistant Gram-positive pathogens. The proposed mechanism of action involves disruption of the functional integrity of the bacterial membrane in a Ca2+-dependent manner. We have used transcriptional profiling to demonstrate that treatment of Bacillus subtilis with daptomycin strongly induces the lia operon including the autoregulatory LiaRS two-component system (homologous to Staphylococcus aureus VraSR). The lia operon protects against daptomycin and deletion of liaH, encoding a phage shock protein A (PspA)-like protein, leads to 3-fold increased susceptibility. Since daptomycin interacts with the membrane, we tested mutants with altered membrane composition for effects on susceptibility. Deletion mutations of mprF (lacking lysyl-phosphatidylglycerol) or des (lipid desaturase) increased daptomycin susceptibility, whereas overexpression of MprF decreased susceptibility. Conversely, depletion of the cell for the anionic lipid phosphatidylglycerol led to increased resistance. Fluorescently-labeled daptomycin localized to the septa and in a helical pattern around the cell envelope and was delocalized upon depletion of phosphatidylglycerol. Together, these results indicate that the daptomycin-Ca2+ complex interacts preferentially with regions enriched in anionic phospholipids and leads to membrane stresses that can be ameliorated by PspA family proteins. Bacillus subtilis W168, WT (+DAP) vs. WT (-DAP). The experiment was conducted in triplicate using three independent total RNA preparations. For WT-rep1 and WT-rep2, daptomycin treated samples were labeled with Alexa Fluor 647 and untreated samples with Alexa Fluor 555. For WT-rep3, the daptomycin treated sample was labeled with Alexa Fluor 555 and the untreated sample with Alexa Fluor 647.
Project description:This SuperSeries is composed of the following subset Series: GSE27650: Bacillus subtilis SigA ChIP-chip (BsubT1 array) GSE27665: Bacillus subtilis SigA ChIP-chip (BsubT2 array) Refer to individual Series
Project description:Transcriptome comparison of Bacillus subtilis Natto under sliding permissive (0.7% agar) and restrictive (1.5% agar or spo0A mutant strain) conditions.