Project description:The association between endometriosis, genomic copy number variant polymorphisms and differential gene expression is still unclear. The rationale of this study was to identify regions of copy number change in familial endometriosis, which could contain genes that may be involved with the susceptibility and progression of this disease.
Project description:Fallopian tube carcinoma (FTC) is a rare, poorly studied and aggressive cancer, associated with poor survival. Since tumorigenesis is related to acquisition of genetic changes, we used genome-wide array CGH to analyze copy number aberrations occurring in FTC in order to obtain a better understanding of FTC carcinogenesis and to identify prognostic events and targets for therapy. We used arrays of 2464 genomic clones, providing ~1.4 Mb resolution across the genome to quantitatively map genomic DNA copy number aberrations from fourteen FTC onto the human genome sequence. All tumors showed a high frequency of copy number aberrations with recurrent gains on 3q, 6p, 7q, 8q, 12p, 17q, 19 and 20q, and losses involving chromosomes 4, 5q, 8p, 16q, 17p, 18q and X. Recurrent regions of amplification included 1p34, 8p11-q11, 8q24, 12p, 17p13, 17q12-q21, 19p13, 19q12-q13 and 19q13. Candidate, known oncogenes mapping to these amplicons included CMYC (8q24), CCNE1 (19q12-q21) and AKT2 (19q13), whereas PIK3CA and KRAS, previously suggested to be candidate driver genes for amplification mapped outside copy number maxima on 3q and 12p, respectively. The FTC were remarkably homogeneous, with some recurrent aberrations occurring in more than 70% of samples, which suggests a stereotyped pattern of tumor evolution. Keywords: array CGH, CCNE1, AKT2, Fallopian tube cancer
Project description:Goal: To identify copy number variation in normal individuals using high density, non-polymorphic oligonucleotide probes Background DNA sequence diversity within the human genome may be more greatly affected by copy number variations (CNVs) than single nucleotide polymorphisms (SNPs). Although the importance of CNVs in genome wide association studies (GWAS) is becoming widely accepted, the optimal methods for identifying these variants are still under evaluation. We have previously reported a comprehensive view of CNVs in the HapMap DNA collection using high density 500K EA (Early Access) SNP genotyping arrays which revealed greater than 1,000 CNVs ranging in size from 1kb to over 3Mb. Although the arrays used most commonly for GWAS predominantly interrogate SNPs, CNV identification and detection does not necessarily require the use of DNA probes centered on polymorphic nucleotides and may even be hindered by the dependence on a successful SNP genotyping assay. Results In this study, we have designed and evaluated a high density array predicated on the use of non-polymorphic oligonucleotide probes for CNV detection. This approach effectively uncouples copy number detection from SNP genotyping and thus has the potential to significantly improve probe coverage for genome-wide CNV identification. This array, in conjunction with PCR-based, complexity-reduced DNA target, queries over 1.3M independent NspI restriction enzyme fragments in the 200bp to 1100bp size range, which is a several fold increase in marker density as compared to the 500K EA array. In addition, a novel algorithm was developed and validated to extract CNV regions and boundaries. Conclusions Using a well-characterized pair of DNA samples, close to 200 CNVs were identified, of which nearly 50% appear novel yet were independently validated using quantitative PCR. The results indicate that non-polymorphic probes provide a robust approach for CNV identification, and the increasing precision of CNV boundary delineation should allow a more complete analysis of their genomic organization. A set of five genomic DNA samples containing different numbers of X chromosomes (1X to 5X sample set, including NA15510 and NA10851) were hybridized to Nsp copy number (CN) arrays in triplicate to evaluate detection of copy number variation using high density, non-polymorphic oligonucleotide probes. 6 Hapmap samples were hybridized to Nsp CN arrays to evaluate Mendelian inheritance of CNVs.
Project description:To find BRCA1-associated copy number abberations, the copy number profiles of Familial Basal-like BRCA1-mutated breast carcinomas were compared to Familial Basal-like carcinomas with no pathgogenic BRCA1/2 mutation. This led to the observation of unanticipated heterogeneity of the BRCA1 associated copy number profiles. Gene expression analysis on the same samples identified tumor infiltrating lymphocytes to be responsible for this observation. High number of infiltrating lymphocytes proved to be detrimental for copy number profiling efforts. After optimal sample selection, BRCA1-associated copy number abberations could be detected.
Project description:Goal: To identify copy number variation in normal individuals using high density, non-polymorphic oligonucleotide probes Background DNA sequence diversity within the human genome may be more greatly affected by copy number variations (CNVs) than single nucleotide polymorphisms (SNPs). Although the importance of CNVs in genome wide association studies (GWAS) is becoming widely accepted, the optimal methods for identifying these variants are still under evaluation. We have previously reported a comprehensive view of CNVs in the HapMap DNA collection using high density 500K EA (Early Access) SNP genotyping arrays which revealed greater than 1,000 CNVs ranging in size from 1kb to over 3Mb. Although the arrays used most commonly for GWAS predominantly interrogate SNPs, CNV identification and detection does not necessarily require the use of DNA probes centered on polymorphic nucleotides and may even be hindered by the dependence on a successful SNP genotyping assay. Results In this study, we have designed and evaluated a high density array predicated on the use of non-polymorphic oligonucleotide probes for CNV detection. This approach effectively uncouples copy number detection from SNP genotyping and thus has the potential to significantly improve probe coverage for genome-wide CNV identification. This array, in conjunction with PCR-based, complexity-reduced DNA target, queries over 1.3M independent NspI restriction enzyme fragments in the 200bp to 1100bp size range, which is a several fold increase in marker density as compared to the 500K EA array. In addition, a novel algorithm was developed and validated to extract CNV regions and boundaries. Conclusions Using a well-characterized pair of DNA samples, close to 200 CNVs were identified, of which nearly 50% appear novel yet were independently validated using quantitative PCR. The results indicate that non-polymorphic probes provide a robust approach for CNV identification, and the increasing precision of CNV boundary delineation should allow a more complete analysis of their genomic organization. Keywords: Copy number variation (CNV) detection
Project description:Adenoid cystic carcinoma (AAC) is a rare but distinctive tumor. Array comparative genomic hybridization (CGH) has been applied for detecting chromosomal copy number alterations in seventeen frozen salivary or pulmonary ACCs samples. There were recurrent gains at 1p36, 6p21, 16q24, 17q21, and 22q11-13, and recurrent losses at 1p35, 6q22, 8q12-13, 9p21, 12q12-13, and 17p11-13. The minimal common regions (MCRs) of these alterations contained several well-known cancer genes, including TP53, CDKN2A/CDKN2B, SKI, CDK10, and VEGF. CDK10 was the only oncogene that localized to the MCR of gain at 16q24.1-24.3. In addition, we identified LIMA1 as the sole putative tumor suppressor gene residing in the MCR of deletion at 12q12q12-13.2. Among well defined and narrow, but unique alterations, there were gains harboring MDM2, cyclin D1, and KIT, as well as one loss involving the hsa-mir-124a-2 miRNA. Using immunohistochemistry, we found abnormal protein expression in the cases with gain of cyclin D1 or MDM2. In conclusion, the majority of previously reported chromosomal copy number alterations are found using array CGH in this small cohort. The suspicion that genes such as TP53, CDKN2A/CDKN2B, and VEGF might play a role in ACC, is strengthened by our results. CDK10 and LIMA1 emerge from our analysis as candidate cancer genes
Project description:Recurrent karyotypic abnormalities are a characteristic feature of cervical cancer (CC) cells, which may result in deregulated expression of important genes that contribute to tumor initiation and progression. To examine the role of genomic copy number alterations, we surveyed genetic lesions in CC utilizing single nucleotide polymorphism (SNP) array. We identified specific genetic alterations associated with CC. These data will be useful in identification of target altered genes, novel markers for predicting high risk precancerous lesions to invasive cancer, comparison of copy number alterations with gene expression changes can provide gene targets for pharmacologic intervention. We demonstrate specific regions of gene amplification (e.g., 11q22), copy number gains (e.g., 3q, 5p, and 20q), and deletions (e.g., 2q, 11q23) in the present study, which forma a framework for identification of critical genes in CC tumorigenesis. Keywords: Cervical cancer, copy number alterations, HPV type, gene amplification
Project description:41 lung adenocarcinoma from never-smokers hybridized on Illumina SNP arrays on 13 HumanCNV370-Quadv3 chips. High-resolution array comparative genomic hybridization analysis of lung adenocarcinoma in 41 never smokers for identification of new minimal common regions (MCR) of gain or loss. The SNP array analysis validated copy-number aberrations and revealed that RB1 and WRN were altered by recurrent copy-neutral loss of heterozygosity.The present study has uncovered new aberrations containing cancer genes. The oncogene FUS is a candidate gene in the 16p region that is frequently gained in never smokers. Multiple genetic pathways defined by gains of MYC, deletions of RB1 and WRN or gains on 7p and 7q are involved in lung adenocarcinoma in never smokers. A 'Cartes d'Identite des Tumeurs' (CIT) project from the French National League Against Cancer (http://cit.ligue-cancer.net) 41 samples hybridized on Illumina SNP arrays. Submitter : Fabien PETEL petelf@ligue-cancer.net . Project leader : Pr Pierre FOURET pierre.fouret@psl.aphp.fr