Project description:Multiple Myeloma primary myeloma cells of 131 patients, 10 human myeloma cell lines, bone marrow stromal cells of 5 myeloma patients, bone marrow CD3 cells of 5 myeloma patients, bone marrow CD14 cells of 5 myeloma patients, bone marrow CD15 cells of 5 myeloma patients, in vitro generated osteoclastic cells of 7 myeloma patients, 7 normal plasmablasts and 6 normal memory B cells.
Project description:The objectives of this study were to assess differences in Bone Marrow Derived Menenchymal Stromal Cells (MSCs) during co-culture with myeloma cells, and to assess differences in myeloma patient MSCs compared to normal donor MSCs. In the study presented here, a Bone Marrow Derived Menenchymal Stromal Cells (MSCs) were analyzed after FACS sorting from 2 week culture in osteogenic media lacking dexamethasone in 3D silk scaffold matrices either in co-culture with the multiple myeloma cell line GFP+Luc+MM1.S or Alone, as controls. Also, monocultures of MSCs grown in 2D, in MSC expansion media, from Normal Donor Controls (ND) or Multiple myeloma patients (MM) were analyzed. Analysis was done looking at microRNA expression in samples with the nanoString microRNA platform for 800 microRNAs.
Project description:Neutrophils are the most abundant nucleated cell type in the bone marrow. A pro-tumor bias in this cell type may have implications for bone-marrow residing malignancies, such as multiple myeloma. Here, we generated single cell transcriptomic overviews of the entire myeloid compartment, including the entire neutrophilic lineage, of the bone marrow of 6 newly diagnosed myeloma patients, 5 treated myeloma patients and 4 non-cancer controls. We find dat mature neutrophils in myeloma patients, both newly diagnosed and treated, have an activated and pro-inflammatory phenotype, accompanied by increased transcription of pro-inflammatory cytokines, such as IL-1β, and myeloma cell survival factors, such as BCMA-ligand BAFF/TNFSF13B. Moreover, inflammatory stromal cells can activate naive neutrophils to acquire an inflammatory phenotype as is seen in patients. Previously, we have shown that inflammatory stromal cells characterized the bone marrow of newly diagnosed myeloma patients. Here, we generate single cell RNA sequencing dataset of non-hematopoietic bone marrow cells of patients after induction treatment, high-dose melphalan, stem cell transplantation and consolidation treatment. We show that this intensive treatment reduced, but did not normalize, stromal inflammation.
Project description:<h4><strong>BACKGROUND:</strong> Multiple myeloma is characterized by clonal proliferation of malignant plasma cells in the bone marrow that produce monoclonal immunoglobulins. N-glycosylation changes of these monoclonal immunoglobulins have been reported in multiple myeloma, but previous studies only detected limited serum N-glycan features.</h4><h4><strong>METHODS:</strong> Here, a more detailed study of the human serum N-glycome of 91 multiple myeloma patients and 51 controls was performed. We additionally analyzed sequential samples from patients (n = 7) which were obtained at different time points during disease development as well as 16 paired blood serum and bone marrow plasma samples. N-glycans were enzymatically released and measured by mass spectrometry after linkage specific derivatization of sialic acids.</h4><h4><strong>RESULTS:</strong> A decrease in both α2,3- and α2,6-sialylation, galactosylation and an increase in fucosylation within complex-type N-glycans were found in multiple myeloma patients compared to controls, as well as a decrease in difucosylation of diantennary glycans. The observed glycosylation changes were present in all ISS stages, including the 'low-risk' ISS I. In individual patients, difucosylation of diantennary glycans decreased with development of the disease. Protein N-glycosylation features from blood and bone marrow showed strong correlation. Moreover, associations of monoclonal immunoglobulin (M-protein) and albumin levels with glycan traits were discovered in multiple myeloma patients.</h4><h4><strong>CONCLUSIONS & GENERAL SIGNIFICANCE: </strong>In conclusion, serum protein N-glycosylation analysis could successfully distinguish multiple myeloma from healthy controls. Further studies are needed to assess the potential roles of glycan trait changes and the associations of glycans with clinical parameters in multiple myeloma early detection and prognosis.</h4>
Project description:Multiple myeloma is hematologic malignancies result from clonal proliferation of plasma cells. Recently, increasing evidence supports the hypothesis that microenvironment cells play important roles in the proliferation, survival, and drug resistance of clonal plasma cells. The aim of this study is to culture stromal cells from bone marrow aspirates of patients with multiple myeloma, and to investigate expression profiles of bone marrow stromal cells and their relationships with the clinical characteristics of patients. RNA was extracted cultured bone marrow stromal cells from 15 patients with plasma cell neoplasms, and bone marrow stromal cells from 13 control patients with 9 B-cell lymphoma patients with no evidence of BM involvement and 4 patients with mild-to-moderate cytopenia without evidence of hematologic malignancies
Project description:Multiple myeloma is hematologic malignancies result from clonal proliferation of plasma cells. Recently, increasing evidence supports the hypothesis that microenvironment cells play important roles in the proliferation, survival, and drug resistance of clonal plasma cells. The aim of this study is to culture stromal cells from bone marrow aspirates of patients with multiple myeloma, and to investigate expression profiles of bone marrow stromal cells and their relationships with the clinical characteristics of patients.
Project description:Impaired bone marrow stromal cells (BMSCs) within the bone niche of multiple myeloma (MM) patients are implicated in the development of myeloma bone disease (MBD) and disease progression. However, the specific mechanisms are not yet fully understood.
Project description:The natural history of multiple myeloma is characterized by its localization to the bone marrow and its interaction with bone marrow stromal cells. The bone marrow stromal cells provide growth and survival signals, thereby promoting the development of drug resistance. Here, we show that the interaction between bone marrow stromal cells and myeloma cells (using human cell lines) induces chromatin remodeling of cis-regulatory elements and is associated with changes in the expression of genes involved in the cell migration and cytokine signaling. The expression of genes involved in these stromal interactions are observed in extramedullary disease in patients with myeloma and provides the rationale for survival of myeloma cells outside of the bone marrow microenvironment. Expression of these stromal interaction genes is also observed in a subset of patients with newly diagnosed myeloma and are akin to the transcriptional program of extramedullary disease. The presence of such adverse stromal interactions in newly diagnosed myeloma is associated with accelerated disease dissemination, predicts the early development of therapeutic resistance, and is of independent prognostic significance. These stromal cell induced transcriptomic and epigenomic changes both predict long-term outcomes and identify therapeutic targets in the tumor microenvironment for the development of novel therapeutic approaches.
Project description:Bone marrow monocytes are primarily committed to osteoclast formation. It is, however, unknown whether potential primary alterations are specifically present in bone marrow monocytes from patients with multiple myeloma, smoldering myeloma or monoclonal gammopathy of undetermined significance. We analyzed the immunophenotypic and transcriptional profiles of bone marrow CD14+ monocytes in a cohort of patients with different types of monoclonal gammopathies to identify alterations involved in myeloma-enhanced osteoclastogenesis. The number of bone marrow CD14+CD16+ cells was higher in patients with active myeloma than in those with smoldering myeloma or monoclonal gammopathy of undetermined significance. Interestingly, sorted bone marrow CD14+CD16+ cells from myeloma patients were more pro-osteoclastogenic than CD14+CD16-cells in cultures ex vivo Moreover, transcriptional analysis demonstrated that bone marrow CD14+ cells from patients with multiple myeloma (but neither monoclonal gammopathy of undetermined significance nor smoldering myeloma) significantly upregulated genes involved in osteoclast formation, including IL21RIL21R mRNA over-expression by bone marrow CD14+ cells was independent of the presence of interleukin-21. Consistently, interleukin-21 production by T cells as well as levels of interleukin-21 in the bone marrow were not significantly different among monoclonal gammopathies. Thereafter, we showed that IL21R over-expression in CD14+ cells increased osteoclast formation. Consistently, interleukin-21 receptor signaling inhibition by Janex 1 suppressed osteoclast differentiation from bone marrow CD14+ cells of myeloma patients. Our results indicate that bone marrow monocytes from multiple myeloma patients show distinct features compared to those from patients with indolent monoclonal gammopathies, supporting the role of IL21R over-expression by bone marrow CD14+ cells in enhanced osteoclast formation.