Project description:Transcriptional profiling of 3 day old virgin male and female adults comparing control male Drosophila melanogaster (MDM) versus male D sechellia (MDS) and comparing control female Drosophila melanogaster (FDM) versus female D sechellia (FDS). Goal was to determine why D sechellia is tolerant to octanoïc acid, the major toxic compound of Morinda citrifolia fruit
Project description:Study of transcriptome level changes in Drosophila melanogaster populations with divergent reproduction and lifespan patterns A 120 chip study using mRNA recovered from unmated female fruit flies 35 generations after selection for contrasting life history traits. The study includes samples from five age classes and two tissues of flies derived from three replicated populations.
Project description:Purpose: Mating induces a multitude of changes in female behavior, physiology and gene expression. Interactions between female and male genotype lead to variation in post-mating phenotypes and reproductive success. So far, few female molecules responsible for these interactions have been identified. Methods: We used Drosophila melanogaster from five geographically dispersed populations to investigate such female x male genotypic interactions at the female transcriptomic and phenotypic levels. Methods: Females from each line were singly-mated to males from the same five lines, for a total of 25 combinations. To assess whether female x male genotypic interactions affect the female post-mating transcriptome, next-generation RNA sequencing was performed on virgin and mated females at 5 to 6 hours post-mating. Results: Seventy-seven genes showed strong variation in mating-induced expression changes in a female x male genotype-dependent manner. These genes were enriched for immune response and odorant-binding functions, and for expression exclusively in the head. Conclusions: The transcriptional variation found in specific functional classes of genes might be a read-out of female x male compatibility at a molecular level. Understanding the roles these genes play in the female post-mating response will be crucial to better understand the evolution of post-mating responses and related conflicts between the sexes.
Project description:Seminal fluid plays an essential role in promoting male reproductive success and modulating female physiology and behaviour. In the fruit fly, Drosophila melanogaster, Sex Peptide (SP) is the best-characterised protein mediator of these effects. It is secreted from the paired male accessory glands (AGs), which, like the mammalian prostate and seminal vesicles, generate most of the seminal fluid contents. After mating, SP binds to spermatozoa and is retained in the female sperm storage organs. It is gradually released by proteolytic cleavage and induces several long-term post-mating responses including increased ovulation, elevated feeding and reduced receptivity to remating, primarily signalling through the SP receptor (SPR). We demonstrate a previously unsuspected SPR-independent function for SP. We show that, in the AG lumen, SP and secreted proteins with membrane-binding anchors are carried on abundant, large neutral lipid-containing microcarriers, also found in other SP-expressing Drosophila species. These microcarriers are transferred to females during mating, where they rapidly disassemble. Remarkably, SP is a key microcarrier assembly and disassembly factor. Its absence leads to major changes in the seminal proteome transferred to females upon mating. Males expressing non-functional SP mutant proteins that affect SP binding to and release from sperm in females also do not produce normal microcarriers, suggesting that this male-specific defect contributes to the resulting widespread abnormalities in ejaculate function. Our data reveal a novel role for SP in formation of seminal macromolecular assemblies, which may explain the presence of SP in Drosophila species that lack the signalling functions seen in D. melanogaster. In this experiment we assessed the effect of SP loss-of-function on the transferred seminal proteome.
Project description:In Drosophila melanogaster, mating radically transforms female physiology and behavior. Post-mating responses include an increase in the oviposition rate, a reduction in female receptivity, and an activation of the immune system . The fitness consequences of mating are similarly dramatic – females must mate once in order to produce fertile eggs, but additional matings have a clear negative effect. Previously, microarrays have been used to examine gene expression of females differing in their reproductive status with the aim of identifying genes influenced by mating. However, since only virgin and single mated females were compared, transcriptional changes associated with reproduction (under natural selection) and the effects of male-induced harm (under sexually antagonistic selection) cannot be disentangled. We partitioned these fundamentally different effects by instead examining the expression profiles of virgin, single mated and double mated females. We found substantial effects relating to reproduction and further effects that are only attributable to a second mating. Immune response genes dominate this male-induced harm effect indicating that the cost of mating may be due partly to this system's activation. We propose that both sexually antagonistic and natural selection have been important in the evolution of the innate immunity genes, thereby contributing to the sexual dimorphismand rapid evolution at these loci. Keywords: Female response to mating Female flies were flash frozen in liquid nitrogen either as virgins or 6 hours after mating and stored at -80°C until RNA extraction was performed (not more than 2 days). 8 whole flies – randomly selected within each treatment – were pooled for each extraction. Total RNA was extracted using Trizol (Invitrogen) and purified with an RNeasy Mini Kit (Qiagen). RNA quantity and quality was checked with an Agilent Bioanalyzer. According to the manufacturer's instructions, samples were prepared and hybridized to Affymetrix GeneChip Drosophila Genome 2.0 (Affymetrix, Santa Clara, CA, USA) by the Uppsala Array Platform (Uppsala, Sweden). Each experimental treatment consisted of 4 independent RNA extractions and hybridizations, giving a total of 12 arrays.
Project description:Five different mitochondrial strains were introgressed in male and female fruit flies with identical (w1118) nuclear genetic background.
Project description:Gene expression levels were determined in 3rd instar and adult Drosophila melanogaster reared during spaceflight, to elucidate the genetic and molecular mechanisms underpinning the effects of microgravity on the immune system. The goal was to validate the Drosophila model for understanding alterations of innate immune responses in humans due to spaceflight. Five containers of flies, with ten female and five male fruit flies in each container, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours, with a new generation reared in microgravity. RNA was extracted on the day of shuttle landing from whole body animals (3rd instar larvae and adults), hybridized to Drosophila 2.0 Affymetrix genome arrays, and the expression level of all genes was normalized against the gene expression level from the corresponding developmental stage animals raised on ground. Spaceflight altered the expression of larval genes involved in the maturation of plasmatocytes (macrophages) and their phagocytic response, as well as the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide pathway and immune stress genes, hallmarks of humoral immunity.
Project description:Fertility depends on the progression of complex and coordinated postmating processes within the extracellular luminal environment of the female reproductive tract (FRT). To achieve a more comprehensive level of knowledge regarding female-derived proteins available to interact with the ejaculate, we utilized semiquantitative mass spectrometry-based proteomics to study the composition of the FRT tissue and, separately, the luminal fluid, before and after mating in Drosophila melanogaster. Our approach leveraged whole-fly isotopic labelling to delineate between female proteins and those transferred from males in the ejaculate. The dynamic mating-induced proteomic changes in the extracellular FRT luminal fluid further informs our understanding of secretory mechanisms of the FRT and serves as a foundation for establishing the roles of ejaculate-female interactions in fertility.
Project description:In Drosophila melanogaster, mating radically transforms female physiology and behavior. Post-mating responses include an increase in the oviposition rate, a reduction in female receptivity, and an activation of the immune system . The fitness consequences of mating are similarly dramatic – females must mate once in order to produce fertile eggs, but additional matings have a clear negative effect. Previously, microarrays have been used to examine gene expression of females differing in their reproductive status with the aim of identifying genes influenced by mating. However, since only virgin and single mated females were compared, transcriptional changes associated with reproduction (under natural selection) and the effects of male-induced harm (under sexually antagonistic selection) cannot be disentangled. We partitioned these fundamentally different effects by instead examining the expression profiles of virgin, single mated and double mated females. We found substantial effects relating to reproduction and further effects that are only attributable to a second mating. Immune response genes dominate this male-induced harm effect indicating that the cost of mating may be due partly to this system's activation. We propose that both sexually antagonistic and natural selection have been important in the evolution of the innate immunity genes, thereby contributing to the sexual dimorphismand rapid evolution at these loci. Keywords: Female response to mating
Project description:We used RNA sequencing to examine the transcriptomes of male and female heads from experimentally-evolved D. melanogaster populations after 117 generations of mating system manipulation in order to examine the pattern of evolution in sex-biased genes.