Project description:Gut microbiota assembly and transitions across life-stages in wild and laboratory populations of the parasitic fly Philornis downsi
Project description:In invasive parasites, generalism is considered advantageous during the initial phase of introduction. Thereafter, fitness costs to parasites, such as host-specific mortality, can drive parasites towards specialism to avoid costly hosts. It is important to determine changes in host specificity of invasive populations to understand host-parasite dynamics and their effects on vulnerable host populations. We examined changes in mortality in the introduced avian vampire fly (Philornis downsi) (Diptera: Muscidae), a generalist myasis-causing ectoparasite, between 2004 and 2020 on Floreana Island (Galápagos). Mortality was measured as the proportion of immature larvae found upon host nest termination. Over the time period, the avian vampire fly was most abundant and had low mortality in nests of the critically endangered medium tree finch (Camarhynchus pauper) and had the highest mortality in nests of hybrid tree finches (Camarhynchus spp.). Low larval mortality was also found in small tree (Camarhynchus parvulus) and small ground finch (Geospiza fuliginosa) nests. Selection could favour avian vampire flies that select medium tree finch nests and/or avoid hybrid nests. Overall, the finding of differences in avian vampire fly survival across host species is parsimonious with the idea that the introduced fly may be evolving towards host specialisation.
Project description:Alien insect species may present a multifaceted threat to ecosystems into which they are introduced. In addition to the direct damage they may cause, they may also bring novel diseases and parasites and/or have the capacity to vector microorganisms that are already established in the ecosystem and are causing harm. Damage caused by ectoparasitic larvae of the invasive fly, Philornis downsi (Dodge and Aitken) to nestlings of endemic birds in the Galapagos Islands is well documented, but nothing is known about whether this fly is itself associated with parasites or pathogens. In this study, diagnostic molecular methods indicated the presence of insect trypanosomatids in P. downsi; to our knowledge, this is the first record of insect trypanosomatids associated with Philornis species. Phylogenetic estimates and evolutionary distances indicate these species are most closely related to the Crithidia and Blastocrithidia genera, which are not currently reported in the Galapagos Islands. The prevalence of trypanosomatids indicates either P. downsi arrived with its own parasites or that it is a highly suitable host for trypanosomatids already found in the Galapagos Islands, or both. We recommend further studies to determine the origin of the trypanosomatid infections to better evaluate threats to endemic fauna of the Galapagos Islands.
Project description:BACKGROUND:Understanding the dispersal and genetic structure of invasive insects across islands is important for designing management plans that are appropriate at spatial and temporal scales. For invasive parasites, population dynamics are largely determined by the distribution and density of their host species. The introduced parasitic fly, Philornis downsi, parasitises nestlings of endemic birds on all major islands of the Galápagos archipelago. The fly's high mortality and fitness impacts are of conservation concern for vulnerable and declining species of Darwin's finches. Using microsatellite data in Bayesian clustering and landscape genetic analyses, we examine gene flow and dispersal in P. downsi between three islands and across habitats (highlands, lowlands) and examine for the presence of population bottlenecks. We also examine variation at the mitochondrial gene CO1 across islands to establish if cryptic species were present. RESULTS:Both the mitochondrial and microsatellite data were consistent with there being a single species across islands. We found low genetic differentiation between islands and strong evidence for inter-island gene flow, or shared recent ancestry among individuals. Landscape genetic analysis identified two genetic clusters: one encompassing Santa Cruz and Isabela, and one on Floreana Island. There was no evidence of genetic differentiation between habitats and molecular variance was mainly attributable to within individuals. The combined P. downsi population was found to have undergone a population bottleneck. CONCLUSION:Philornis downsi populations have high connectivity within and between islands, with low levels of genetic differentiation between Floreana and the other two islands examined. The genetic bottleneck found across islands suggests there was a small founding population or few introduction events of P. downsi. The high dispersal capacity and wide habitat use of P. downsi highlights the significant threat that this parasite poses to the Galápagos avifauna. Our findings are relevant for assessing the viability of methods to control P. downsi on Galápagos, such as the sterile insect technique.
Project description:The invasive parasitic fly, Philornis downsi (Muscidae), is one of the greatest threats to the avifauna of the Galapagos Islands. The larvae of this fly feed on the blood and tissues of developing nestlings of at least 18 endemic and native birds. The aim of the current study was to investigate biotic and abiotic factors that may influence the population dynamics of this invasive parasite. To study the influence of vegetation zone and related climatic factors on fly numbers, a bi-weekly monitoring program using papaya-baited traps was carried out at a dry, lowland site and at a humid, highland site on Santa Cruz Island between 2012-2014. Female flies, a large proportion of which were inseminated and gravid, were collected throughout the year at both sites, indicating females were active during and between the bird breeding seasons. This is the first evidence that female flies are able to persist even when hosts are scarce. On the other hand, catch rates of male flies declined between bird breeding seasons. Overall, catch rates of P. downsi were higher in the drier, lowland habitat, which may be a consequence of host or resource availability. Time was a stronger predictor of adult fly numbers than climate, further suggesting that P. downsi does not appear to be limited by its environment, but rather by host availability. Seasonal catch rates suggested that populations in both habitats were continuous and multivoltine. Numbers of adult female flies appeared to be regulated chiefly by simple direct density dependence, and may be governed by availability of bird nests with nestlings. Nevertheless, confounding factors such as the existence of reservoir hosts that perpetuate fly populations and changes in behavior of P. downsi may increase the vulnerability of bird hosts that are already IUCN red-listed or in decline.
Project description:Understanding the range and behaviour of an invasive species is critical to identify key habitat areas to focus control efforts. Patterns of range use in parasites can differ temporally, across life stages and between sexes. The invasive avian vampire fly, Philornis downsi, spends the larval stage of its life within bird nests, feeding on developing nestlings and causing high levels of mortality and deformation. However, little is known of the ecology and behaviour of the non-parasitic adult fly life stage. Here, we document sex-specific temporal and spatial patterns of abundance of adult avian vampire flies during a single Darwin's finch breeding season. We analyse fly trapping data collected across 7 weeks in the highlands (N = 405 flies) and lowlands (N = 12 flies) of Floreana Island (Galápagos). Lowland catches occurred later in the season, which supports the hypothesis that flies may migrate from the food-rich highlands to the food-poor lowlands once host breeding has commenced. Fly abundance was not correlated with host nesting density (oviposition site) but was correlated with distance to the agricultural zone (feeding site). We consistently caught more males closer to the agricultural zone and more females further away from the agricultural zone. These sex differences suggest that males may be defending or lekking at feeding sites in the agricultural zone for mating. This temporal and sex-specific habitat use of the avian vampire fly is relevant for developing targeted control methods and provides insight into the behavioural ecology of this introduced parasite on the Galápagos Archipelago.
Project description:Introduced parasites that alter their host's mating signal can change the evolutionary trajectory of a species through sexual selection. Darwin's Camarhynchus finches are threatened by the introduced fly Philornis downsi that is thought to have accidentally arrived on the Galapagos Islands during the 1960s. The P. downsi larvae feed on the blood and tissue of developing finches, causing on average approximately 55% in-nest mortality and enlarged naris size in survivors. Here we test if enlarged naris size is associated with song characteristics and vocal deviation in the small tree finch ( Camarhynchus parvulus), the critically endangered medium tree finch ( C. pauper) and the recently observed hybrid tree finch group ( Camarhynchus hybrids). Male C. parvulus and C. pauper with enlarged naris size produced song with lower maximum frequency and greater vocal deviation, but there was no significant association in hybrids. Less vocal deviation predicted faster pairing success in both parental species. Finally, C. pauper males with normal naris size produced species-specific song, but male C. pauper with enlarged naris size had song that was indistinguishable from other tree finches. When parasites disrupt host mating signal, they may also facilitate hybridization. Here we show how parasite-induced naris enlargement affects vocal quality, resulting in blurred species mating signals.