Project description:We used a smooth muscle cell-specific mineralocorticoid receptor knockout mouse to generate young and aged MR-intact and SMC-MR-KO aortic miRNA to examine the effect of age on vascular miRNA alterations in the presence and absence of SMC-MR. For more information about the mouse model see: McCurley, A et al. Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat Med. 2012 Sep;18(9):1429-33 Total miRNA was extracted from young (3-4 mo) and aged male (12mo) MR-intact and SMC-MR-KO mice to investigate aging-induced alterations in vascular miRNA expression
Project description:ABSTRACT Aims Forced differentiation of non-muscle cells into heart muscle cells using cardiac transcription factors (cTFs) may constitute a novel strategy to accomplish myocardial regeneration. Methods We investigated the potential of the cTF myocardin to induce cardiomyocyte differentiation and compared the myocardin-induced gene expression program to that of fully differentiated cardiomyocytes using oligonucleotide microarray hybridizations, quantitative RT-PCR analyses and immunofluorescence microscopy. The experiments were performed in the recently described human cardiomyocytes progenitor cells (hCMPCs), which differentiate into fully functional cardiomyocytes upon stimulation with 5-azacytidine and transforming growth factor β1. Results and Conclusions Forced myocardin expression stimulated transcription of a surprisingly large repertoire of heart muscle-specific genes in hCMPCs but did not cause their differentiation into functional cardiomyocytes. Specifically, myocardin gene transfer did not stimulate the synthesis of several sarcomeric (regulatory) proteins and ion channel constituents. The heart and smooth muscle-enriched isoforms of myocardin stimulate equally well the transcription of many of their cardiomyocyte-specific and virtually all of their smooth muscle target genes. However, the heart muscle-enriched myocardin species is a much more potent transactivator of a subset of genes encoding mainly cardiomyocyte-specific myofibrillar components. This may explain the underestimation of myocardin's cardiomyogenic potential in previous studies utilizing the smooth muscle-enriched isoform of this cTF.
Project description:We used a smooth muscle cell-specific mineralocorticoid receptor knockout mouse to generate young and aged MR-intact and SMC-MR-KO aortic mRNA to examine the effect of age on vascular mRNA alterations in the presence and absence of SMC-MR. For more information about the mouse model see: McCurley, A et al. Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat Med. 2012 Sep;18(9):1429-33
Project description:We used a smooth muscle cell-specific mineralocorticoid receptor knockout mouse to generate young and aged MR-intact and SMC-MR-KO aortic miRNA to examine the effect of age on vascular miRNA alterations in the presence and absence of SMC-MR. For more information about the mouse model see: McCurley, A et al. Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat Med. 2012 Sep;18(9):1429-33
Project description:Smooth muscle cell TGFβ signaling is one of the primary drivers of smooth muscle cell maturation. Inhibition of smooth muscle cell TGFβ signaling in hyperlipidemic mice induces vessel wall inflammation and vessel wall dilation/dissection and leads aortic aneurysm. We performed scRNAseq method to examine smooth muscle cell gene expression profile using Apoe and SMC specific TGFbR2 KO in Apoe background mice.
Project description:Aims: The microcirculation serves crucial functions in adult heart, distinct from those carried out by epicardial vessels. Microvessels are governed by unique regulatory mechanisms, impairment of which leads to microvessel-specific pathology. There are few treatment options for patients with microvascular heart disease, primarily due to limited understanding of underlying pathology. We developed an integrated process for simultaneous isolation and culture of the main cell types comprising the microcirculation in adult mouse heart: endothelial cells, pericytes and vascular smooth muscle cells, and here we characterize the transcriptional profile of each cell type. Methods and Results: Confluent cultures of mouse cardiac endothelial cells, pericytes and vascular smooth muscle cells underwent transcriptional profiling using RNA sequencing. We define the top 50 transcripts expressed by each cell type. Conclusions: We define microvascular cell transcriptional profiles, identify novel transcripts, and confirm established cell-specific markers. Our results allow identification of unique markers and regulatory transcripts that govern microvascular physiology and pathology.
Project description:Platelet-derived growth factor (PDGF) signalling and the subsequent activation of the calcium ion channel, ORAI1 are critical drivers of pathological remodelling of native vascular smooth muscle cells to proliferative state, which is a process associated with various vascular diseases. This study aims to reveal transcriptional networks altered following ORAI1 inhibition in vascular smooth muscle cells. To study the effect of ORAI1 inhibition on VSMC biology, we performed RNA-Seq analysis of PDGF-stimulated primary human aortic smooth muscle cells treated with either ORAI1 inhibitor, (n=4) or with vehicle (n=4), and investigated the effect of ORAI1 inhibition on the transcriptional response of cells.