Project description:To find out which miRNAs are significantly differential expression and potentially involved in the process of inflammation promoting carcinogenesis of colorectal cancer (CRC). We established a colitis-associated CRC (AOM/DSS, Azoxymethane/Dextran sulfate sodium salt) model, colitis (DSS) model and high dose carcinogen (AOM, about 5 times AOM amount given than AOM/DSS model) model. At day 100 when tumor formed in AOM/DSS bearing mice (colitis-associated CRC mice) but no tumor was found in AOM (high dose carcinogen) and DSS model, we employed miRNA microarray as a discovery platform to identify genes with the potential to involve in the progression of CRC promoted by inflammation. 5-7 weeks female BALB/c mice, (1) AOM/DSS group: AOM 12.5mg/kg i.p. at day 1, DSS drinking 5d/21dx3circles from day 5; (2) AOM group: AOM 10mg/kg i.p. 1/weekx6 from day 1; (3) DSS group: DSS drinking 5d/21dx3circles from day 5. The distal colon epithelial tissues were collected at day100 when tumor formed in AOM/DSS bearing mice. The miRNA microarray experiments were performed together.
Project description:To find out which mRNAs are significantly differential expression and potentially involved in the process of inflammation promoting carcinogenesis of colorectal cancer (CRC). We established a colitis-associated CRC (AOM/DSS, Azoxymethane/Dextran sulfate sodium salt) model, colitis (DSS) model and high dose carcinogen (AOM, about 5 times AOM amount given than AOM/DSS model) model. At day 100 when tumor formed in AOM/DSS bearing mice (colitis-associated CRC mice) but no tumor was found in AOM (high dose carcinogen) and DSS model, we employed whole genome microarray expression profiling as a discovery platform to identify genes with the potential to involve in the progression of CRC promoted by inflammation. 5-7 weeks female BALB/c mice, (1) AOM/DSS group: AOM 12.5mg/kg i.p. at day 1, DSS drinking 5d/21dx3circles from day 5; (2) AOM group: AOM 10mg/kg i.p. 1/weekx6 from day 1; (3) DSS group: DSS drinking 5d/21dx3circles from day 5. The distal colon epithelial tissues were collected at day100 when tumor formed in AOM/DSS bearing mice. The whole genome microarray expression profiling experiments were performed together.
Project description:This study identifies a novel mechanism linking IL-17A with colon tissue repair and tumor development. Abrogation of IL-17A signaling mice attenuated tissue repair of DSS-induced damage in colon epithelium and markedly reduced tumor development in AOM/DSS model of colitis-associated cancer. The goal of these studies is to identify genes associated with IL-17RC deficiency during AOM-DSS induced tumorigenesis
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to analysis NGS-derived transcriptome profiling (RNA-seq) in DSS induced chronic inflammation, AOM/DSS induced colitis-associated colorectal tumorigenesis and organoids isolation from colitis-associated colorectal tumorigenesis Methods: DSS, AOM/DSS and organoids mRNA profiles of wild-type (WT) and RING Finger 3 (RNF138−/−) mice were generated by deep sequencing, in triplicate, using Illumina HiSeq 2500. The sequence reads were trimmed for low-quality sequence, then mapped to mm10 whole genome using STAR v2.6.1d Results: Using an optimized data analysis workflow, the padj <0.05 and fold change >2 were refered as differential expression. There are 987, 2649 and 2373 differential genes were found in RNF138-/- compared with Wild Type in DSS, AOM/DSS and organoids, respectively Conclusions: Our study revealed NFκB pathway is the main activation pathway regulated by RNF138 loss
Project description:Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract, which has been shown to increase the incidence of colorectal cancer. Recent studies have highlighted the role of ubiquitination, a post-translational modification, in the occurrence and development of colonic inflammation. Ovarian tumor deubiquitinase 6A (OTUD6A) is a deubiquitinating enzyme, which regulates cell proliferation and tumorigenesis. In this study, we investigated the expression and role of OTUD6A in IBD. Wide-type or Otud6a-/- mice were used to develop dextran sodium sulfate (DSS)- or 2,6,4-trinitrobenzene sulfonic acid (TNBS)-induced colitis model, as well as azoxymethane (AOM)/DSS-induced colitis-associated cancer model. Bone marrow-derived macrophages (BMDMs) were isolated from wild-type and Otud6a-/- mice to dissect molecular mechanisms. Our data show that OTUD6A deficiency attenuated DSS or TNBS-induced colitis, as well as AOM/DSS-induced colitis-related colon cancer in vivo. Bone marrow transplantation experiments further revealed that OTUD6A in myeloid cells was responsible for exacerbation of DSS-induced colitis. Mechanistically, OTUD6A directly bound to NACHT domain of NLRP3 inflammasome and selectively cleaved K48-linked polyubiquitin chains from NLRP3 at K430 and K689 to enhance the stability of NLRP3, leading to increased IL-1β level and inflammation. Taken together, our research identifies a new function of OTUD6A in the pathogenesis of colitis by promoting NLRP3 inflammasome activation, suggesting that OTUD6A could be a potential target for the treatment of IBD.
Project description:In humans with UC, low-grade dysplasia also develops predominantly in the distal colon, progresses more rapidly to neoplasia than proximal colon low-grade dysplasia and associates with worse patient prognosis. In a mouse model of colitis-associated carcinogenesis induced by administration of the mutagen AOM and the luminal toxin DSS, tumors also develop exclusively in the distal part of the large intestine. We monitored global changes in the transcriptome of mouse proximal and distal colon during exposure to AOM/DSS with the aim to define biological pathways and processes that characterize regional responses of the large intestine to colitis-associated carcinogenesis.
Project description:Purpose : The goals of this study are to compare NGS-derived transcriptome profiling (RNA-seq) of colon samples of intestinal epithelial cell specific Axin1 Knockout mice and WT controls that were submitted to DSS-induced colitis and AOM/DSS-induced colorectal carcinogenesis. Methods : DSS-induced colitis was performed on Axin1flfl (WT) and Vil CreERT2;Axin1fl/fl (Axin1KOΔIEC) mice by giving 3% DSS dissolved in drinking water for 7 days and subsequently placed on regular water for recovery before sacrifice at Day 7 and D13. Methods : AOM/DSS-induced colorectal tumorigenesis was performed on Axin1flfl (WT) and Vil CreERT2;Axin1fl/fl (Axin1KOΔIEC) mice that were sacrificed at day 100 post-AOM injection to collect colorectal tumors. Methods : Colonic mRNA profiles of WT and Axin1KOΔIEC mice were generated by deep sequencing using Illumina NextSeq 500 instrument (150base-lengths read V2 chemistry in a paired-end mode)
Project description:Folic acid supplementation (8 mg/kg diet) promotes colon tumor formation in mice with established colitis induced by carcinogen azoxymethane (AOM) and dextran sulfate sodium sulfate (DSS). This induction of colon tumors was associated with hypomethylation of DNA cased by folic acid supplementation.
Project description:Folic acid supplementation (8 mg/kg diet) promotes colon tumor formation in mice with established colitis induced by carcinogen azoxymethane (AOM) and dextran sulfate sodium sulfate (DSS). This induction of colon tumors was associated with hypomethylation of DNA cased by folic acid supplementation.
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are using transcriptome profiling (RNA-seq) to evaluate the effects of anti-S100a9 antibody on the global transcriptome of the colon tissues of the AOM/DSS mouse model (a model that mimics the human colitis-associated colon cancer development). Methods: 36 five-week-old male ICR mice were randomized divided into three groups: control (i.e. no AOM/DSS and antibody treatment), AOM/DSS+IgG Ab (1.5 mg/kg), and AOM/DSS+anti-S100a9 Ab (1.5 mg/kg). Mice were intraperitoneal injected with a single dose of 10 mg/kg azoxymethane (AOM) (A5486; Sigma) on day 1. One week after the AOM injection, mice were given three cycles of DSS (cycle 1: 2%, 7 days; cycle 2: 1.5%, 5 days; and cycle 3: 1.5%, 5 days, DSS: 36–50 kDa; MP Biomedicals, CA, USA) in their drinking water, and then distilled water until the end of the experiment. Antibodies were administrated intravenously every two days during the three cycles of DSS treatment. Mice were sequentially killed randomly at the end of the 18th week, and at least five mice were killed for each group at each time point. RNAs were extracted by Trizol and sequenced by Solexa high-throughput sequencing service (Oebiotech, Shanghai, China). Data were extracted and normalized according to the manufacturer’s standard protocol.Each group has three mices' colon tissues be tested. Results: Log-fold changes of up- or down-regulated mRNAs between the control and experiment group were selected with a significance threshold of p<0.05. There are 1017 mRNAs were up-regulated and 815 were down-regulated in “AOM/DSS+IgG Ab" group comparing to “control" group. There are 385 mRNAs were up-regulated and 163 were down-regulated in “AOM/DSS+anti-S100a9 Ab" group comparing to “control" group. There are 1314 mRNAs were up-regulated and 968 were down-regulated in “AOM/DSS+anti-S100a9 Ab" group comparing to “AOM/DSS+IgG Ab". Conclusions: Our study describes the global transciptome changes of colon tissues of the AOM/DSS mouse model induced by anti-S100a9 antibody treatment.