Project description:Gene expression level of Clostridioides difficile (C. difficile) strain R20291 comparing control C. difficile carring pMTL84151 as vector plasmid with C. difficile conjugated with a pMTL84151-03890 gene. Goal was to determine the effects of 03890 gene conjugation on C. difficile strain R20291 gene expression.
Project description:The experiment intends to reveal the difference in gene expression profiles between the wild-type strain and the ∆cwp66 mutant of Clostridioides difficile. We first constructed the ∆cwp66 mutant, and the phenotypic changes of the ∆cwp66 mutant against the wild-type strain were studied. To further elucidate the mechanism of phenotypic changes of the ∆cwp66 mutant, RNA-sequencing experiments were carried out to reveal the underlying mechanism of phenotypic changes.
Project description:The intestines house a diverse microbiota that must compete for nutrients to survive, but the specific limiting nutrients that control pathogen colonization are not clearly defined. Clostridioides difficile colonization typically requires prior disruption of the microbiota, suggesting that outcompeting commensals for resources is key in establishing C. difficile infection (CDI). The immune protein calprotectin (CP) is released into the gut lumen during CDI to chelate zinc (Zn) and other essential nutrient metals. Yet, the impact of Zn limitation on C. difficile colonization is unknown. To define C. difficile responses to Zn limitation, we performed RNA sequencing on C. difficile exposed to CP. In media with CP, C. difficile upregulated genes involved in metal homeostasis and amino acid metabolism.
Project description:Clostridioides difficile interactions with the gut mucosa are crucial for colonisation and establishment of infection, however key infection events during the establishment of disease are still poorly defined. To better understand the initial events that occur during C. difficile colonisation, we employed a dual RNA-sequencing approach to study the host and bacterial transcriptomic profiles during C. difficile infection in a dual-environment in vitro human gut model. Temporal changes in gene expression were analysed over 3-24h post infection and comparisons were made with uninfected controls.
Project description:Clostridioides difficile is one of the most common nosocomial pathogens and a global public health threat. Upon colonization of the gastrointestinal tract, C. difficile is exposed to a rapidly changing polymicrobial environment and a dynamic metabolic milieu. Despite the link between the gut microbiota and susceptibility to C. difficile, the impact of synergistic interactions between the microbiota and pathogens on the outcome of infection is largely unknown. Here, we show that microbial cooperation between C. difficile and Enterococcus has a profound impact on the growth, metabolism, and pathogenesis of C. difficile.. Through a process of nutrient restriction and metabolite cross-feeding, E. faecalis shapes the metabolic environment in the gut to enhance C. difficile fitness and increase toxin production. These findings demonstrate that members of the microbiota, such as Enterococcus, have a previously unappreciated impact on C. difficile behavior and virulence.
Project description:The Clostridioides difficile toxins TcdA and TcdB are responsible for diarrhea and colitis. The aim of this project was to explore the effects of the toxins on epithelial barrier function and the molecular mechanisms for diarrhea and inflammation. RNA-seq of toxin-treated intestinal cell monolayers was performed to describe the C. difficile-mediated effects. mRNA profiles from intestinale epithelial cells were generated by deep sequencing using Illumina NovaSeq 6000. This data provide the basis for subsequent upstream regulator analysis.
Project description:Clostridioides difficile (formerly Clostridium difficile) colonizes the gastrointestinal tract following disruption of the microbiota and can initiate a spectrum of clinical manifestations ranging from asymptomatic to life-threatening colitis. Following antibiotic treatment, luminal oxygen concentrations increase, exposing gut microbes to potentially toxic reactive oxygen species (ROS). Though typically regarded as a strict anaerobe, C. difficile can grow at low oxygen concentrations. How the bacterium adapts to a microaerobic environment and whether those responses to oxygen are conserved amongst strains is not entirely understood. Here, two C. difficile strains (630 and CD196) were cultured in 1.5% oxygen and the transcriptional response was evaluated via RNA-sequencing. During growth in a microaerobic environment, several genes predicted to protect against oxidative stress were upregulated, including ruberythrins and rubredoxins. Genes involved in metal homeostasis were positively correlated with increasing oxygen levels and were also amongst the most differentially transcribed. These included ferrous iron transporters (feo), a zinc transporter (zupT), and predicted siderophore transporters. To directly compare the transcriptional landscape between C. difficile strains, a ‘consensus-genome’ was generated. On the basis of the identified conserved genes, basal transcriptional differences as well as variations in the response to oxygen were evaluated. While several responses were similar between the strains, there were significant differences in the abundance of transcripts for amino acid and carbohydrate metabolism. Furthermore, homologous metal homeostasis genes were similarly transcribed, but the intracellular metal concentrations significantly varied both in an oxygen-dependent and independent manner. Overall, these results indicate that C. difficile adapts to grow in a low oxygen environment through transcriptional changes, though the specific strategy employed varies between strains.
Project description:Clostridioides difficile, the leading cause of antibiotic-associated diarrhoea worldwide, is a genetically diverse species which can metabolise a number of nutrient sources upon colonising a dysbiotic gut environment. Trehalose, a disaccharide sugar consisting of two glucose molecules bonded by an α 1,1-glycosidic bond, has been hypothesised to be involved in the emergence of C. difficile hypervirulence due to its increased utilisation by the RT027 and RT078 strains. Using RNA-sequencing analysis, we report the identification of a putative trehalose metabolism pathway which is induced during growth in trehalose: this has not been previously described within the C. difficile species. These data demonstrate the metabolic diversity exhibited by C. difficile which warrants further investigation to elucidate the molecular basis of trehalose metabolism within this important gut pathogen.
Project description:RNA-seq was conducted to uncover the regulatory roles of RsbW in the lifestyle of Clostridioides difficile strain R20291. RNA were extracted from planktonic cultures, which were grown in BHI-S (Sigma-Aldrich, USA) to early stationary phase (10h). The cells were re-suspended in LETS buffer and lysed using Fast-prep 24 instrument (MP Bioscience) and RNA was extracted using 1 ml Trizol (Ambion, USA). Samples were cleaned and sequenced by Novogene Company Limited, PE150 with approximately 10 million reads per sample. After QC, reads were aligned to R20291 (NC_013316.1) with Bowtie2 and readcounts were generated with Samtools and Bedtools. Differential gene expression analysis was conducted with DESeq2 with a p-value of 0.05, differential gene expression was determined with ± -2 logFC.
Project description:Clostridioides difficile can cause severe infections in the gastrointestinal tract and affects almost half a million people in the U.S every year. Upon establishment of infection, a strong immune response is induced. We sought to investigate the dynamics of the mucosal host response during C. difficile infection.