Project description:Pericytes confer vascular stability in the retina, and the loss of pericytes can cause the blood-retina barrier breakdown seen in diabetic retinopathy. To identify endothelial-specific genes expressed in pericyte-deprived retinal vessels, we purified genetically labeled endothelial cells from Tie2-GFP transgenic mice treated with neutralizing antibody against PDGFRb (APB5) and performed gene expression profiling using DNA microarray. To find out endothelial-specific genes associated with the loss of pericyte coverage, the comparison of microarray data was carried out between retinal endothelial cells (data from GSE27238) and APB5-treated retinal endothelial cells.
Project description:Photoreceptor disorders are collectively known as retinal degeneration (RD), and include retinitis pigmentosa (RP), cone-rod dystrophy and age related macular degeneration (AMD). These disorders are largely genetic in origin; individual mutations in any one of >200 genes cause RD, making mutation specific therapies prohibitively expensive. A better treatment plan, particularly for late stage disease, may involve stem cell transplants into the photoreceptor or ganglion cell layers of the retina. Stem cells from young mouse retinas can be transplanted, and can form photoreceptors in adult retinas. These cells can be grown in tissue culture, but can no longer form photoreceptors. We have used microarrays to investigate differences in gene expression between cultured retinal progenitor cells (RPCs) that have lost photoreceptor potential, postnatal day 1 (pn1) retinas and the postnatal day 5 (pn5) retinas that contain transplantable photoreceptors. We have also compared FACS sorted Rho-eGFP expressing rod photoreceptors from pn5 retinas with Rho-eGFP negative cells from the same retinas. We have identified over 300 genes upregulated in rod photoreceptor development in multiple comparisons, 37 of which have been previously identified as causative of retinal disease when mutated. It is anticipated that this research should bring us closer to growing photoreceptors in culture and therefore better treatments for RD. This dataset is also a resource for those seeking to identify novel retinopathy genes in RD patients. We extracted whole retinas from postnatal day 1 (Pn1) and postnatal day 5 (Pn5) mice, and compared them with cultured RPCs derived from pn5 retinas, using Affymetrix mouse 430A_2 arrays. We also extracted cells from Rho-eGFP Pn5 retinas and FACS sorted them. GFP+ve cells represent immature rod photoreceptors, as they express the Rho-eGFP fusion protein, which is only expressed in rods. GFP-ve cells represent all other retinal neurons. These samples were amplified and compared using Affymetrix mouse 430A_2arrays, by Source Biosciences GMBH, Berlin, Germany. Results from immature rods were then compared with those from other retinal neurons, while results from whole Pn5 retinas were compared with Pn1 retinas (which don't yet express rod specific genes), and RPCs, which are glial precursors. RPCs were also compared with Pn1 retinas. Genes which showed changed expression profiles in at least 3/4 of comparisons were prioritised for further investigation.
Project description:Control CAG-GFP or CAG-Zfp292 (Zfp292-OE) plasmids were electroporated into P0 mouse pups in vivo. We harvested the retinas 4 days later to allow for robust expression, dissociated the retinas into single cell preps, collected the GFP+ Retinal progenitor cells (RPCs) via FACS sorting from control or Zfp292-OE conditions, and processed the cells for bulk RNA-seq.
Project description:Interactions among neuroglial and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Neuronal synaptic dysfunctions precede vascular abnormalities in many retinal pathologies. However, whether neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using in vivo genetic studies in mice, single-cell RNA-sequencing and functional validation, we found that deep plexus angiogenesis and paracellular BRB maturation are delayed in Vglut1-/- retinas, where neurons fail to release glutamate. In contrast, deep plexus angiogenesis and paracellular BRB maturation are accelerated in Gnat1-/- retinas, where constitutively depolarized rods release excess glutamate. Mechanistically, Norrin expression and endothelial Norrin/b-catenin signaling are downregulated in Vglut1-/- retinas, and upregulated in Gnat1-/- retinas. Pharmacological activation of endothelial Norrin/ b-catenin signaling in Vglut1-/- retinas rescued both deep plexus angiogenesis and paracellular BRB integrity. Thus, our findings demonstrate that glutamatergic neuronal activity regulates retinal angiogenesis and BRB maturation by modulating Norrin/b-catenin signaling.
Project description:Four Kcng4-cre;stop-YFP mouse retinas from two mice were dissected, dissociated and FACS sorted, and single cell RNA-seq libraries were generated for 384 single cells using Smart-seq2. Aligned bam files are generated for 383 samples as one failed to align. Four mouse retinas (labeled 1la, 1Ra, and 2la, 2Ra respective from the two mice) were used, and 96 single cells from each were processed using Smart-seq2. Total 384 cells Smart-seq2 analysis of P17 FACS sorted retinal cells from the Kcng4-cre;stop-YFP mice (Kcng4tm1.1(cre)Jrs mice [Duan et al., Cell 158, 793-807, 2015] crossed to the cre-dependent reporter Thy1-stop-YFP Line#1 [Buffelli et al., Nature 424, 430-434, 2003])
Project description:Transcription profiling by array of mouse male retinas to investigate IGF-I-induced chronic gliosis and retinal stress IGF-I exert multiple effects in different retinal cell populations in both physiological and pathological conditions. Transgenic mice overexpressing IGF-I in the retina showed impaired electroretinographic responses at 6-7 months of age that worsen with age. This retinal neuronal dysfunction was correlated with the loss of rod photoreceptors, bipolar, ganglion and amacrines cells. Neuronal alterations were preceded by the overexpression of retinal stress markers, acute phase proteins and gliosis-related genes. IGF-I overexpression leads to chronic gliosis and microgliosis in TgIGF-I retinas, with mild oxidative stress, impaired recycling of glutamate and defective potassium buffering. These impaired supportive functions can contribute to neurodegeneration in TgIGF-I retinas, together with the increased production of pro-inflammatory cytokines, potential mediators of neuronal death. 3 transgenic and 3 wild type biological replicates examined.
Project description:Transcription profiling by array of mouse male retinas to investigate IGF-I-induced chronic gliosis and retinal stress IGF-I exert multiple effects in different retinal cell populations in both physiological and pathological conditions. Transgenic mice overexpressing IGF-I in the retina showed impaired electroretinographic responses at 6-7 months of age that worsen with age. This retinal neuronal dysfunction was correlated with the loss of rod photoreceptors, bipolar, ganglion and amacrines cells. Neuronal alterations were preceded by the overexpression of retinal stress markers, acute phase proteins and gliosis-related genes. IGF-I overexpression leads to chronic gliosis and microgliosis in TgIGF-I retinas, with mild oxidative stress, impaired recycling of glutamate and defective potassium buffering. These impaired supportive functions can contribute to neurodegeneration in TgIGF-I retinas, together with the increased production of pro-inflammatory cytokines, potential mediators of neuronal death.
Project description:Photoreceptor disorders are collectively known as retinal degeneration (RD), and include retinitis pigmentosa (RP), cone-rod dystrophy and age related macular degeneration (AMD). These disorders are largely genetic in origin; individual mutations in any one of >200 genes cause RD, making mutation specific therapies prohibitively expensive. A better treatment plan, particularly for late stage disease, may involve stem cell transplants into the photoreceptor or ganglion cell layers of the retina. Stem cells from young mouse retinas can be transplanted, and can form photoreceptors in adult retinas. These cells can be grown in tissue culture, but can no longer form photoreceptors. We have used microarrays to investigate differences in gene expression between cultured retinal progenitor cells (RPCs) that have lost photoreceptor potential, postnatal day 1 (pn1) retinas and the postnatal day 5 (pn5) retinas that contain transplantable photoreceptors. We have also compared FACS sorted Rho-eGFP expressing rod photoreceptors from pn5 retinas with Rho-eGFP negative cells from the same retinas. We have identified over 300 genes upregulated in rod photoreceptor development in multiple comparisons, 37 of which have been previously identified as causative of retinal disease when mutated. It is anticipated that this research should bring us closer to growing photoreceptors in culture and therefore better treatments for RD. This dataset is also a resource for those seeking to identify novel retinopathy genes in RD patients.