Project description:NF-κB is a key regulator of innate and adaptive immunity and is implicated in the pathogenesis of acute kidney injury (AKI). The cell type-specific functions of NF-κB in the kidney are unknown; however, the pathway serves distinct functions in immune and tissue-parenchymal cells. We analyzed tubular epithelial-specific NF-κB signaling in a mouse model of ischemia-reperfusion injury (IRI)-induced AKI. NF-κB reporter activity and nuclear localization of phosphorylated NF-κB subunit p65 analyses in mice revealed widespread NF-κB activation in renal tubular epithelia and in interstitial cells following IRI that peaked at 2-3 days after injury. To genetically antagonize tubular epithelial NF-κB activity, we generated mice expressing the human NF-κB super-repressor IκBα∆N in renal proximal, distal, and collecting duct epithelial cells. These mice were protected from IRI-induced AKI, as indicated by improved renal function, reduced tubular apoptosis, and attenuated neutrophil and macrophage infiltration. Tubular NF-κB-dependent gene expression profiles revealed temporally distinct functional gene clusters for apoptosis, chemotaxis, and morphogenesis. Primary proximal tubular cells isolated from IκBα∆N-expressing mice exposed to hypoxia-mimetic agent cobalt chloride were protected from apoptosis and expressed reduced levels of chemokines. Our results indicate that postischemic NF-κB activation in renal-tubular epithelia aggravates tubular injury and exacerbates a maladaptive inflammatory response.
Project description:NF-κB is a key regulator of innate and adaptive immunity and is implicated in the pathogenesis of acute kidney injury (AKI). The cell type-specific functions of NF-κB in the kidney are unknown; however, the pathway serves distinct functions in immune and tissue-parenchymal cells. We analyzed tubular epithelial-specific NF-κB signaling in a mouse model of ischemia-reperfusion injury (IRI)-induced AKI. NF-κB reporter activity and nuclear localization of phosphorylated NF-κB subunit p65 analyses in mice revealed widespread NF-κB activation in renal tubular epithelia and in interstitial cells following IRI that peaked at 2-3 days after injury. To genetically antagonize tubular epithelial NF-κB activity, we generated mice expressing the human NF-κB super-repressor IκBα∆N in renal proximal, distal, and collecting duct epithelial cells. These mice were protected from IRI-induced AKI, as indicated by improved renal function, reduced tubular apoptosis, and attenuated neutrophil and macrophage infiltration. Tubular NF-κB-dependent gene expression profiles revealed temporally distinct functional gene clusters for apoptosis, chemotaxis, and morphogenesis. Primary proximal tubular cells isolated from IκBα∆N-expressing mice exposed to hypoxia-mimetic agent cobalt chloride were protected from apoptosis and expressed reduced levels of chemokines. Our results indicate that postischemic NF-κB activation in renal-tubular epithelia aggravates tubular injury and exacerbates a maladaptive inflammatory response.
Project description:NF-κB has an essential role in innate immune response and inflammation and is involved in cancer development and progression. We apply the SEC-PCP-SILAC method incorporating metabolic labeling, size exclusion chromatography and protein correlation profiling to construct a complex network of interactome rearrangement in response to NF-κB modulation in breast cancer cells. Our interaction network represents a complex insight into the dynamics of MCF-7 protein interactome associated with NF-κB pathway. Our dataset could serve as a basis for future studies characterizing role of NF-κB in breast cancer cellular pathways. This PRIDE project includes results from SILAC labeled and label-free replicates from the SEC-PCP-SILAC analysis of protein complexes in MCF-7 cells with inhibited and uninhibited NF-κB pathway, results from the immunoprecipitation experiment aimed at interaction partners of NF-κB factor RELA, analysis of total proteome after NF-κB inhibition, and results from SEC fractionation of untreated and unlabeled MCF-7 cells.
Project description:Transcriptional profiling of human control and Néstor-Guillermo Progeria Syndrome (NGPS) fibroblasts and induced pluripotent stem cells (iPSCs). Somatic cell reprogramming involves rejuvenation of adult cells and relies on the ability to erase age-associated molecular marks. Accordingly, reprogramming efficiency declines with ageing, and age-associated features such as genetic instability, cell senescence or telomere shortening negatively affect this process. However, the regulatory mechanisms that constitute age-associated barriers for cell reprogramming remain largely unknown. Here, by using cells from patients with premature ageing, we demonstrate that NF-κB activation is a critical barrier for the generation of induced pluripotent stem cells (iPSCs) in ageing. We show that NF-κB repression occurs during cell reprogramming towards a pluripotent state. Conversely, ageing-associated NF-κB hyperactivation impairs generation of iPSCs by eliciting reprogramming repressors DOT1L and YY1, reinforcing cell senescence signals and down-regulating pluripotency genes. We also show that genetic and pharmacological NF-κB inhibitory strategies significantly increase the reprogramming efficiency of fibroblasts from Néstor-Guillermo Progeria Syndrome (NGPS) and Hutchinson-Gilford Progeria Syndrome (HGPS) patients, as well as from normal aged donors. Finally, we demonstrate that DOT1L inhibition in vivo ameliorates the accelerated ageing phenotype and extends lifespan in a progeroid animal model. Collectively, our results provide evidence for a novel role of NF-κB in the control of cell fate transitions and reinforce the interest of studying age-associated molecular impairments to implement cell reprogramming methodologies, and to identify new targets of rejuvenation strategies. Control and NGPS fibroblasts were reprogrammed. RNA was extracted and transcriptional profiling was obtained with GeneChip Human Exon 1.0 ST Arrays.
Project description:Transcriptional profiling of human control and Néstor-Guillermo Progeria Syndrome (NGPS) mesenchymal stem cells (MSCs). Somatic cell reprogramming involves rejuvenation of adult cells and relies on the ability to erase age-associated molecular marks. Accordingly, reprogramming efficiency declines with ageing, and age-associated features such as genetic instability, cell senescence or telomere shortening negatively affect this process. However, the regulatory mechanisms that constitute age-associated barriers for cell reprogramming remain largely unknown. Here, by using cells from patients with premature ageing, we demonstrate that NF-κB activation is a critical barrier for the generation of induced pluripotent stem cells (iPSCs) in ageing. We show that NF-κB repression occurs during cell reprogramming towards a pluripotent state. Conversely, ageing-associated NF-κB hyperactivation impairs generation of iPSCs by eliciting reprogramming repressors DOT1L and YY1, reinforcing cell senescence signals and down-regulating pluripotency genes. We also show that genetic and pharmacological NF-κB inhibitory strategies significantly increase the reprogramming efficiency of fibroblasts from Néstor-Guillermo Progeria Syndrome (NGPS) and Hutchinson-Gilford Progeria Syndrome (HGPS) patients, as well as from normal aged donors. Finally, we demonstrate that DOT1L inhibition in vivo ameliorates the accelerated ageing phenotype and extends lifespan in a progeroid animal model. Collectively, our results provide evidence for a novel role of NF-κB in the control of cell fate transitions and reinforce the interest of studying age-associated molecular impairments to implement cell reprogramming methodologies, and to identify new targets of rejuvenation strategies. Control and NGPS MSCs were differentiated into bone in the presence or absence of sodium salicylate. Total RNA was extracted and global gene expression was analyzed.
Project description:The transcription factor NF-κB is the master regulator of the immune response but also regulates gene expression to influences cell survival, proliferation and differentiation. Inducible site-specific phosphorylation of NF-κB is critical for its activity and appears to be important in gene specific transcriptional control. Promyelocytic Leukemia (PML) is a nuclear protein that forms sub-nuclear structures termed nuclear bodies associated with transcriptionally active genomic regions. We demonstrate that PML promotes NF-κB- induced transcriptional responses by promoting the phosphorylation of NF-κB p65 at key regulatory sites. Our findings demonstrate a critical role for PML in promoting NF-κB transcriptional activity through signal induced post-translational modifications.
Project description:TLR4/NF-κB signaling plays a central mediator in response to danger signals released in the muscle ischemia-reperfusion injury (IRI). This study was designed to profile TLR4/NF-κB-responsive microRNAs (miRNAs) in the skeletal muscles following IRI. Following 2 h of ischemia and subsequent reperfusion for indicated times (0 h, 4 h, 1 d, and 7 d) of the isolated thigh skeletal muscles based on femoral artery perfusion of C57BL/6, Tlr4–/–, and NF-κB–/–mice, the muscle specimens were analyzed with an miRNA array to detect the TLR4/NF-κB-responsive miRNAs.