Project description:The amphioxus, as a simple basal chordate model, plays an important and unique role on providing insights into the evolution of tissues and organs of the vertebrates. To understand the unique features of the amphioxus during evolution, it’s important to identify the gene and microRNA (miRNA) expression profiles of amphioxus tissues or organs. However, the systematic examination of these expression profiles is not conducted. Here, we focused on characterizing the miRNA expression patterns of three amphioxus digestive organs (the gill, intestine and hepatic caecum) that are believed to be the first line of immune defense.
Project description:Recently, amphioxus has served as a model for studying the origin and evolution of vertebrate immunity. However, little is known about how microRNAs (miRNAs) are involved in the immune defense in amphioxus. In this article, we identified the amphioxus miRNAs in the acute-phase response to Lipopolysaccharide (LPS). First, we determined the time point for the peak of immune response in amphioxus after LPS challenge by evaluating the expression of TLR4 and NF-κb(v-rel) which were commonly used immune response indicators. Then we performed miRNA microarray analysis on gill samples collected at the time point to select the differentially expressed miRNAs. Finally, we used real-time quantitative PCR to detect the expression patterns of amphioxus miRNAs under effective LPS challenge during the time course. The microarray data revealed that the miRNA expression file was significantly changed after LPS stimulation. The changes of the most upregulated and most downregualted miRNAs in gills of the amphioxus following challenge with LPS revealed a temporal induction kinetic. Our current study will provide valuable information to take an insight into molecular mechanism of innate immune and the evolution of the miRNA family.
Project description:Global climatic fluctuations governed the ancestral demographic histories of species and contributed to place the current population status into a more extensive ecological and evolutionary context. Genetic variations will leave unambiguous signatures in the patterns of intraspecific genetic variation in extant species since the genome of each individual is an imperfect mosaic of the ancestral genomes. Here, we report the genome sequences of 20 Branchiostoma individuals by whole-genome resequencing strategy. We detected over 140 million genomic variations for each Branchiostoma individual. In particular, we applied the pairwise sequentially Markovian coalescent (PSMC) method to estimate the trajectories of changes in the effective population size (N e) of Branchiostoma population during the Pleistocene. We evaluated the threshold of sequencing depth for proper inference of demographic histories using PSMC was ≥25×. The PSMC results highlight the role of historical global climatic fluctuations in the long-term population dynamics of Branchiostoma. The inferred ancestral N e of the Branchiostoma belcheri populations from Zhanjiang and Xiamen (China) seawaters was different in amplitude before the first (mutation rate = 3 × 10-9) or third glaciation (mutation rate = 9 × 10-9) of the Pleistocene, indicating that the two populations most probably started to evolve in isolation in their respective seas after the first or third glaciation of the Pleistocene. A pronounced population bottleneck coinciding with the last glacial maximum was observed in all Branchiostoma individuals, followed by a population expansion occurred during the late Pleistocene. Species that have experienced long-term declines may be especially vulnerable to recent anthropogenic activities. Recently, the industrial pollution and the exploitation of sea sand have destroyed the harmonious living environment of amphioxus species. In the future, we need to protect the habitat of Branchiostoma and make full use of these detected genetic variations to facilitate the functional study of Branchiostoma for adaptation to local environments.
Project description:As the extant representatives of the basal chordate lineage, amphioxi (including the genera Branchiostoma, Asymmetron and Epigonichthys) play important roles in tracing the state of chordate ancestry. Previous studies have reported that members of the Branchiostoma species have similar morphological phenotypic characteristics, but in contrast, there are high levels of genetic polymorphisms in the populations. Here, we resequenced 20 Branchiostomabelcheri genomes to an average depth of approximately 12.5X using the Illumina HiSeq 2000 platform. In this study, over 52 million variations (~12% of the total genome) were detected in the B. belcheri population, and an average of 12.8 million variations (~3% of the total genome) were detected in each individual, confirming that Branchiostoma is one of the most genetically diverse species sequenced to date. Demographic inference analysis highlighted the role of historical global temperature in the long-term population dynamics of Branchiostoma, and revealed a population expansion at the Greenlandian stage of the current geological epoch. We detected 594 Single nucleotide polymorphism and 148 Indels in the Branchiostoma mitochondrial genome, and further analyzed their genetic mutations. A recent study found that the epithelial cells of the digestive tract in Branchiostoma can directly phagocytize food particles and convert them into absorbable nontoxic nutrients using powerful digestive and immune gene groups. In this study, we predicted all potential mutations in intracellular digestion-associated genes. The results showed that most "probably damaging" mutations were related to rare variants (MAF<0.05) involved in strengthening or weakening the intracellular digestive capacity of Branchiostoma. Due to the extremely high number of polymorphisms in the Branchiostoma genome, our analysis with a depth of approximately 12.5X can only be considered a preliminary analysis. However, the novel variant dataset provided here is a valuable resource for further investigation of phagocytic intracellular digestion in Branchiostoma and determination of the phenotypic and genotypic features of Branchiostoma.