Project description:The multi-kinase inhibitor drug sorafenib is used as first line treatment for hepatocellular carcinoma and advanced renal cell carcinoma. Sorafenib mainly undergos cytochrome P450 (CYP) 3A4-mediated oxidation and uridine diphosphate glucuronosyl transferase (UGT) 1A9-mediated glucuronidation in liver, but the biotransformation of sorafenib in kidney remains unclear. Therefore, we integrated the mRNA expression data of 36 kidney samples and the corresponding metabolic activities for sorafenib to study the metabolic mechanism of sorafenib in kidney.
Project description:Sorafenib, the first targeted therapy for hepatocellular carcinoma (HCC), has been utilized in clinics over a decade. However, its effectiveness is severely hindered by the acquired drug resistance, the mechanisms of which remain largely elusive. In this study, we identify that carbonic anhydrase 2 (CA2) is a key regulator of sorafenib resistance. Mechanistically, sorafenib treatment decreases intracellular pH (pHi) by suppressing monocarboxylate transporter 4 (MCT4) expression, while high levels of CA2 counteract MCT4-mediated pHi dysregulation upon sorafenib treatment, maintaining pHi homeostasis to facilitate cell survival and sorafenib resistance. Targeting CA2 re-sensitizes resistant HCC cells to sorafenib both in vitro and in vivo. Importantly, analysis of clinical samples demonstrates a strong correlation between CA2 expression levels and the therapeutic efficacy of sorafenib in HCC patients. Our findings highlight the significance of CA2 in facilitating sorafenib resistance and propose targeting CA2 as a potential strategy for overcoming sorafenib resistance in HCC patients.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.