Project description:To identify transcriptional markers for beef traits related to meat tenderness and moisture, we measured the transcriptome of the Longissimus dorsi skeletal muscle in 10 Korean native cattle (KNC). We analyzed the correlation between the beef transcriptome and measurements of four different beef traits, shear force (SF), water holding capacity (WHC), cooking loss (CL), and loin eye area (LEA). We obtained non-overlapping and unique panels of genes showing strong correlations (|r| > 0.8) with SF, WHC, CL, and LEA, respectively. Functional studies of these genes indicated that SF was mainly related to energy metabolism, and LEA to rRNA processing. Interestingly, our data suggested that WHC is influenced by protein metabolism. Overall, the skeletal muscle transcriptome pointed to the importance of energy and protein metabolism in determining meat quality after the aging process. The panels of transcripts for beef traits may be useful for predicting meat tenderness and moisture. Experiment Overall Design: Gene expression profiles were correlated with beef traits measured at the same cattle.
Project description:While genetic markers related to meat production traits have been identified in many other breeds of cattle, research on weight in Hanwoo cattle (Korean native cattle) has been relatively limited. In this study, we performed expression quantitative trait loci (eQTL) analysis and differential gene expression analysis to detect candidate genes influencing the weight characteristics of 32 castrated Hanwoo cattle across 22 tissues and identify variants that affect gene expression levels. In total, we identified a total of 2,465 differentially expressed genes, among which we discovered key genes such as UBD, RGS2, FASN, and SCD that have functions related to adipogenesis, body weight, obesity, and lipid metabolism. Gene-set enrichment analysis revealed that candidate genes in adipose tissue are involved in metabolic pathways related to Obesity-related traits, adipose metabolism, and lipid metabolism. Additionally, we found that decreased expression of TRIM31 contributes to weight gain which can be explained by the associated candidate cis-eQTL genotypes for TRIM31 and their effect on differential gene expression between the lower and higher weight groups. Our findings revealed candidate genes associated with the weight of Hanwoo cattle and perhaps can provide comprehensive insights into the association of weight with various tissues beyond adipose tissue and muscle, indicating the potential for expanding the focus of livestock trait research.
Project description:Hanwoo cattle are a Korean breed renowned for their cultural significance and high-quality beef, characterized by low cholesterol and high unsaturated fat ratio. Growth is divided into a growing phase focused on development and a fattening phase for marbling. Proper feed management, considering genetic and environmental factors, is vital for maximizing growth potential. The rumen plays a crucial role in digestion and gene expression regulation, with rumen fermentation being central to nutrient absorption and cattle health. In this study, we conduct transcriptome analysis of the rumen at eight timepoints. Our goal is to identify genetic factors that influence the growth of Hanwoo steers to enhance our understanding of the rumen’s functions and roles during their growth. In this RNA-sequencing analysis of Hanwoo steer rumen, differential gene expression was examined over eight timepoints, highlighting significant genetic changes, particularly between 12 and 26 months. Weighted gene co-expression network analysis identified and organized as three modules: turquoise, blue, and yellow. The turquoise module, linked to immune response, showed down-regulation in genes at 30 months. The blue module, associated with steroid metabolism, was notably up-regulated at 26 months. The yellow module’s genes showed a consistent increase in expression with growth. These modules and their functional annotations provide a deeper understanding of the biological processes during Hanwoo growth, highlighting the intricate relationship between gene expression and cattle development. The growth stages of Hanwoo steers were explored in our investigation utilizing rumen transcriptome data. The rumen plays critical role in their development, particularly during the growing and fattening phases. Proper feed management, considering the rumen’s function, is essential for optimal growth. Transcriptome analysis helps identify genes associated with growth and provides insights for cattle breeding and management practices. Understanding the complex connection between gene expression and Hanwoo development is essential for maximizing productivity and health.
Project description:*Background: Adipocytes mainly function as energy storage and endocrine cells. The amount and distribution of fat are important factor that influence the meat quality in the beef industry. Fat depot can be found around internal organ (ometal), beneath the skin (subcutaneous), and between muscles (intramuscular). Different adipose depot showed the biological and genetic difference depending on their location. This inter-depot variation might be influenced by the inherent genetic programing for development of adipose depots. In this study, we used RNA-seq data to investigate the difference in transcriptome of various adipose depots in Hanwoo. *Results: Using RNA-seq, we identified 5797, 2156, and 5455 DEGs in the comparison between OI, OS, and IS respectively (FDR<0.01) and found 853, 48, and 979 DEGs specific to subcutaneous, intramuscular and omental fat respectively. DEGs in intramuscular fat were highly enriched the metabolism related pathways compared to other fat depots. DEGs specific to the omental fat is significantly enriched in PPAR signaling pathway and cell-junction related pathway. In subcutaneous fat, cytokine-cytokine receptor interaction with chemokines (CXC and CC subfamily) was the most significantly enriched the pathways. Interestingly, melanogenesis pathway was associated with the subcutaneous depot. Even though the adipose tissues shared the same pathways for adipocyte differentiation, the regulation of genes were different based on the depot. *Conclusions: We comparatively analyzed the transcripome profile from different adipose tissues using NGS and identified DEGs between adipose depot and specific to depot in Hanwoo animals. The functional annotation analysis of DEGs found that transcriptome profile difference in various adipose tissue of intramuscular, subcutaneous, and ometal fat. whole mRNA sequencing profiles of nine Korean native cattle (nine profiles of omental fat tissue, nine profiles of intramuscular fat tissue, nine profiles of subcutaneous fat tissue and eight profiles of muscle tissue)