Project description:Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be a two-step process catalysed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetically advantageous. This functional separation has puzzled microbiologists for a century. Here we report on the discovery and cultivation of a completely nitrifying bacterium from the genus Nitrospira, a globally distributed group of nitrite oxidizers. The genome of this chemolithoautotrophic organism encodes the pathways both for ammonia and nitrite oxidation, which are concomitantly activated during growth by ammonia oxidation to nitrate. Genes affiliated with the phylogenetically distinct ammonia monooxygenase and hydroxylamine dehydrogenase genes of Nitrospira are present in many environments and were retrieved on Nitrospira contigs in new metagenomes from engineered systems. These findings fundamentally change our picture of nitrification and point to completely nitrifying Nitrospira as key components of nitrogen-cycling microbial communities.
Project description:The ecophysiology of complete ammonia oxidizing Nitrospira (CMX) and their widespread occurrence in groundwater suggests that CMX bacteria have a competitive advantage over ammonia-oxidizing bacteria (AOB) and archaea (AOA) in these environments. However, the relevance of their activity from the ecosystem-level process perspective has remained unclear. We investigated oligotrophic carbonate rock aquifers as a model system to assess the contribution of CMX, AOA and AOB to nitrification and to identify the environmental drivers of their niche differentiation at different levels of ammonium and oxygen. CMX accounted for up to 95% of the ammonia oxidizer communities. Nitrification rates were positively correlated to CMX clade A-associated phylotypes and AOB affiliated with Nitrosomonas ureae. Surprisingly, short-term incubations amended with the nitrification inhibitors allylthiourea and chlorate suggested that AOB contributed more than 90% to overall ammonia oxidation, while metaproteomics analysis confirmed an active role of CMX in both ammonia and nitrite oxidation. Ecophysiological niche differentiation of CMX clades A and B, AOA and AOB was linked to their requirements for ammonium, oxygen tolerance, and metabolic versatility. Our results demonstrate that despite numerical predominance of CMX, the first step of nitrification in oligotrophic groundwater is primarily governed by AOB. Higher growth yields at lower NH4+ turnover rates and energy derived from nitrite oxidation most likely enable CMX to maintain consistently high populations. Activity measurements combined with differential inhibition allowed a refined understanding of ammonia oxidizer coexistence, competition and cooperation beyond the insights from molecular data alone.
Project description:The Baltic Sea is one of the largest brackish water bodies in the world. Redoxclines that form between oxic and anoxic layers in the deepest sub-basins are a semi-permanent character of the pelagic Baltic Sea. The microbially mediated nitrogen removal processes in these redoxclines have been recognized as important ecosystem service that removes large proportion of the nitrogen load originating from the drainage basin. However, nitrification, which links mineralization of organic nitrogen and nitrogen removal processes, has remained poorly understood. To gain better understanding of the nitrogen cycling in the Baltic Sea, we analyzed the assemblage of ammonia oxidizing bacteria and archaea in the central Baltic Sea using functional gene microarrays and measured the biogeochemical properties along with potential nitrification rates. Overall, the ammonia oxidizer communities in the Baltic Sea redoxcline were very evenly distributed. However, the communities were clearly different between the eastern and western Gotland Basin and the correlations between different components of the ammonia oxidizer assemblages and environmental variables suggest ecological basis for the community composition. The more even community ammonia oxidizer composition in the eastern Gotland Basin may be related to the constantly oscillating redoxcline that does not allow domination of single archetype. The oscillating redoxcline also creates long depth range of optimal nitrification conditions. The rate measurements suggest that nitrification in the central Baltic Sea is able to produce all nitrate required by denitrification occurring below the nitrification zone.
Project description:The Baltic Sea is one of the largest brackish water bodies in the world. Redoxclines that form between oxic and anoxic layers in the deepest sub-basins are a semi-permanent character of the pelagic Baltic Sea. The microbially mediated nitrogen removal processes in these redoxclines have been recognized as important ecosystem service that removes large proportion of the nitrogen load originating from the drainage basin. However, nitrification, which links mineralization of organic nitrogen and nitrogen removal processes, has remained poorly understood. To gain better understanding of the nitrogen cycling in the Baltic Sea, we analyzed the assemblage of ammonia oxidizing bacteria and archaea in the central Baltic Sea using functional gene microarrays and measured the biogeochemical properties along with potential nitrification rates. Overall, the ammonia oxidizer communities in the Baltic Sea redoxcline were very evenly distributed. However, the communities were clearly different between the eastern and western Gotland Basin and the correlations between different components of the ammonia oxidizer assemblages and environmental variables suggest ecological basis for the community composition. The more even community ammonia oxidizer composition in the eastern Gotland Basin may be related to the constantly oscillating redoxcline that does not allow domination of single archetype. The oscillating redoxcline also creates long depth range of optimal nitrification conditions. The rate measurements suggest that nitrification in the central Baltic Sea is able to produce all nitrate required by denitrification occurring below the nitrification zone. Two color array (Cy3 and Cy5): the universal standard 20-mer oligo is printed to the slide with a 70-mer oligo (an archetype). Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer conjugated to a 20-mer oligo (fluoresced with Cy5) complementary to the universal standard will bind to the oligo probes on the array. Signal is the ratio of Cy3 to Cy5. Three replicate probes were printed for each archetype. Two replicate arrays were run on duplicate targets.
Project description:Marine sponges represent one of the few eukaryotic groups that ubiquitously harbor symbiotic members of the Thaumarchaeota, which are important chemoautotrophic ammonia-oxidizers in many environments. However in most studies, direct demonstration of ammonia-oxidation by these archaea within sponges is lacking, and little is known about sponge-specific adaptations of archaeal ammonia oxidizers (AOA). In this study, we characterized the thaumarchaeal symbiont of the marine sponge Ianthella basta using metaproteogenomics, fluorescence in situ hybridization, qPCR and direct isotope-based functional assays. We demonstrate that the I. basta symbiont is not closely related to other genomically sequenced sponge AOA and is a member of a new genus. “Candidatus Nitrosospongia bastadiensis” is an abundant symbiont that is solely responsible for nitrite formation from ammonia in I. basta that surprisingly does not harbor nitrite-oxidizing microbes. Consistently, Ca N. bastadiensis encodes and expresses the genetic repertoire required for chemolithoautotrophic ammonia oxidation. Furthermore, we show that this AOA is equipped with an expanded set of extracellular subtilisin-like proteases, a metalloprotease unique among archaea, as well as a putative branched-chain amino acid ABC transporter. This repertoire is strongly indicative of a mixotrophic lifestyle and is (with slight variations) also found in other sponge-associated, but not in free-living AOA. We predict that this feature as well as an expanded and unique set of secreted serpins (protease inhibitors), a unique array of eukaryotic-like proteins, and a DNA-phosporothioation system likely involved in defense against foreign DNA, represent important adaptations of AOA to life within these ancient filter-feeding animals.
Project description:Nitrite-oxidizing bacteria are vital players in the global nitrogen cycle that convert nitrite to nitrate during the 2nd step of nitrification. Within this functional guild, the genus Nitrospira is among the most widespread and phylogenetically and physiologically diverse nitrite oxidizers and its members drive nitrite oxidation in many natural and biotechnological ecosystems. Despite their ecological and biotechnological importance, our understanding of Nitrospira’s energy metabolism is still limited. The main bottleneck for a detailed biochemical characterization of Nitrospira is biomass production, since they are slow-growing organisms and fastidious to culture. In this study, we cultured Nitrospira moscoviensis in a continuous stirred tank reactor system (CSTR) allowing constant biomass harvesting. Additionally, this cultivation setup enabled accurate control of physicochemical parameters and thus avoided fluctuating levels of nitrite and accumulation of nitrate. We performed transcriptome analysis and confirmed constant gene expression profiles in the chemostat culture over a period of two weeks. The transcriptomic data supports the predicted core metabolism of N. moscoviensis, including the reductive TCA cycle as a CO2 fixation pathway, the novel bd-like oxidase as terminal oxidase and the octaheme nitrite reductase involved in nitrogen assimilation. Additionally, the expression of multiple copies of respiratory complexes suggests functional differentiation of these copies within the respiratory chain. Transcriptome analysis also suggests a soluble and a membrane-bound gamma subunit as part of the nitrite oxidoreductase (NXR), the enzyme catalyzing nitrite oxidation. Overall, the transcriptome data provided novel insights into the metabolism of Nitrospira supporting the genome-based prediction of key pathways. Moreover, the application of a CSTR to cultivate Nitrospira is an important foundation for future proteomic and biochemical characterizations, which are crucial for a better understanding of canonical and complete nitrifying microorganisms.
Project description:Quorum sensing (QS) is a widespread process in bacteria used to coordinate gene expression with cell density, diffusion dynamics, and spatial distribution through the production of diffusible chemical signals. To date, most studies on QS have focused on model bacteria that are amenable to genetic manipulation and capable of high growth rates, but many environmentally important bacteria have been overlooked. For example, representatives of proteobacteria that participate in nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, produce QS signals called acyl-homoserine lactones (AHLs). Nitrification emits nitrogen oxide gases (NO, NO2, and N2O), which are potentially hazardous compounds that contribute to global warming. Despite considerable interest in nitrification, the purpose of QS in the physiology/ecology of nitrifying bacteria is poorly understood. Through a quorum quenching approach, we investigated the role of QS in a well-studied AHL-producing nitrite oxidizer, Nitrobacter winogradskyi.We added a recombinant AiiA lactonase to N. winogradskyi cultures to degrade AHLs to prevent their accumulation and to induce a QS-negative phenotype and then used mRNA sequencing (mRNA-Seq) to identify putative QS-controlled genes. Our transcriptome analysis showed that expression of nirK and nirK cluster genes (ncgABC) increased up to 19.9-fold under QS-proficient conditions (minus active lactonase). These data led to us to query if QS influenced nitrogen oxide gas fluxes in N. winogradskyi. Production and consumption of NOx increased and production of N2O decreased under QS-proficient conditions. Quorum quenching transcriptome approaches have broad potential to identify QS-controlled genes and phenotypes in organisms that are not genetically tractable.
2016-10-05 | GSE84969 | GEO
Project description:Effects of Different Land-use Types on Active Autotrophic Ammonia and Nitrite Oxidizers in Cinnamon Soils