Project description:To evaluate the miRNA characteristic in fresh maize, we used small RNA-seq to get microRNAome of fresh maize.In this study, we identified 236 miRNAs sequences, of which 19 miRNAs are aboundantly expressed in fresh maize (normalized reads> 1000 ).
Project description:Through hierarchical clustering of transcript abundance data across a diverse set of tissues and developmental stages in maize, we have identified a number of coexpression modules which describe the transcriptional circuits of maize development.
Project description:RNA-directed DNA methylation (RdDM) in plants is a well-characterized example of RNA interference-related transcriptional gene silencing. To determine the relationships between RdDM and heterochromatin in the repeat-rich maize (Zea mays) genome, we performed whole-genome analyses of several heterochromatic features: dimethylation of lysine 9 and lysine 27 (H3K9me2 and H3K27me2), chromatin accessibility, DNA methylation, and small RNAs; we also analyzed two mutants that affect these processes, mediator of paramutation1 and zea methyltransferase2.
Project description:Transcriptional profiling of 4 maize varieties comparing genetic root response under control temperature conditions with genetic root response under low temperature conditions
Project description:Drought represents a major constraint on maize production worldwide. Understanding the genetic basis for natural variation in drought tolerance of maize may facilitate efforts to improve this trait in cultivated germplasm. Here, using a genome-wide association study, we show that a miniature inverted-repeat transposable element (MITE) inserted in the promoter of a NAC gene (ZmNAC111) is significantly associated with natural variation in maize drought tolerance. For maize RNA-seq analysis, pooled tissues from three, eight-day-old maize seedlings were collected from transgenic and wild-type plants, prior to or after 2-hour dehydration, to conduct the RNA-seq analysis.
Project description:Maize (Zea mays L.) was hydroponically grown for 14 days and then stressed with hypoxia. Maize roots were sampled after 24 hours and analyzed by mass spectrometry.
Project description:Using the RL-SAGE method (Gowda et al. 2004), a maize leaf longSAGE library (cv. inbred line B73) was constructed. Leaf tissues were harvested from 4-week old B73 plants for RNA isolation. The conditions in the growth chamber were 12 h light (500 µmol photons m-2 sec-1), 20oC at night, 26oC in the day and 85% relative humidity. A total of 44,870 unique tags (17 bases +CATG) were identified from 232,948 individual tags in the maize leaf library.
Project description:Papain-like cysteine proteases (PLCPs) play important roles in plant defense mechanisms. Previous work identified a set of five apoplastic PLCPs (CP1A, CP1B, CP2, XCP2 and CatB) which are crucial for the orchestration of SA-dependent defense signaling and vice versa in maize (Zea mays). One central question from these findings is which mechanism is triggered by apoplastic PLCPs to induce SA-dependent defenses. By a mass spectrometry approach we discovered a novel peptide (Zip1 = Zea mays immune signaling peptide) to be enriched in apoplastic fluid upon SA treatment. Zip1 induces PR-gene expression when applied to naїve maize leaves. Moreover, it activates apoplastic PLCPs similar as SA does, suggesting Zip1 to play an important role in SA-mediated defense signaling. In vitro studies using recombinant protein showed that CP1A and CP2, but not XCP2 and CatB, release Zip1 from its pro-peptide (PROZIP1) in vitro. Strikingly, metabolite analysis showed direct induction of SA de novo synthesis by Zip1 in maize leaves. In line with this, RNA sequencing revealed that Zip1-mediated changes in maize gene expression largely resemble SA-induced responses. Consequently, Zip1 increases maize susceptibility to the necrotrophic fungal pathogen Botrytis cinerea. In summary, this study identifies the PLCP-released peptide signal Zip1, which triggers SA signaling in maize.
Project description:We report the role of sRNAs populations during the induction of callus tissues from VS-535 maize embryos displaying contrasting in vitro embryogenic potential; characterized through Next-generation sequencing (NGS). We conclude that the Embryogenic Response during Maize Somatic Embryogenesis induction is closely related to sRNAs regulation and depends on the developmental stage of the explant.