Project description:Crude extracts of Moorea producens JHB (with blank solvent controls), grown under normal conditions or with excess sodium iodide, and run by LCMS on a Thermo LTQ FT and LCQ Advantage, respectively. Isolated pure compound mzXML files from the LTQ FT by direct nanomate injection.
Project description:In oocytes of mammals and other animals, gene regulation is mediated primarily through changes in poly(A)-tail length. Here, we introduce PAL-AI, an integrated neural network machine-learning model that accurately predicts tail-length changes in maturing oocytes of frogs and mammals. We show that PAL-AI learned known and previously unknown sequence elements and their contextual features that control poly(A)-tail length, enabling it to predict tail-length changes resulting from 3ʹ-UTR single-nucleotide substitutions. It also predicted tail-length-mediated translational changes, allowing us to nominate genes important for oocyte maturation. When comparing predicted tail-length changes in human oocytes with genomic datasets of the All of Us Research Program and gnomAD we found that genetic variants predicted to disrupt tail lengthening are under negative selection in the human population, thereby linking mRNA tail lengthening to human female fertility.
Project description:Woody plant material represents a renewable resource that has the potential to produce biofuels and/or novel materials with greatly reduced CO2 emissions. The study of viral infection in plants has largely focussed on detrimental symptoms, such as leaf yellowing or cell death that result in reduced crop yields. Apple rubbery wood (ARW) disease is the result of a viral infection that causes woody stems to exhibit increased flexibility. Biochemical and histochemical studies suggest the phenotype is a result of reduced lignification, specifically within the fibre cells of woody xylem. Expression analysis and proteomic data suggests that the downregulation of phenylalanine ammonia lyase (PAL) is responsible for decreased lignification. PAL is required for the first committed step in the phenylpropanoid pathway that leads to lignin biosynthesis. This is consistent with a large increase in soluble phenolics, including the lignin precursor phenylalanine, in symptomatic xylem. Downregulation of PAL appears to result from a widespread siRNA induction by the infected host, triggered by the virus. Symptomatic wood exhibited increased digestibility comparable to those seen in genetically engineered plants that alter lignin biosynthesis. To our knowledge this is the first example of a virus that alters lignin metabolism and offers a unique route to address the problem of the recalcitrant nature of plant biomass and a possible route to generating wood with altered mechanical properties.
Project description:Woody plant material represents a renewable resource that has the potential to produce biofuels and/or novel materials with greatly reduced CO2 emissions. The study of viral infection in plants has largely focussed on detrimental symptoms, such as leaf yellowing or cell death that result in reduced crop yields. Apple rubbery wood (ARW) disease is the result of a viral infection that causes woody stems to exhibit increased flexibility. Biochemical and histochemical studies suggest the phenotype is a result of reduced lignification, specifically within the fibre cells of woody xylem. Expression analysis and proteomic data suggests that the downregulation of phenylalanine ammonia lyase (PAL) is responsible for decreased lignification. PAL is required for the first committed step in the phenylpropanoid pathway that leads to lignin biosynthesis. This is consistent with a large increase in soluble phenolics, including the lignin precursor phenylalanine, in symptomatic xylem. Downregulation of PAL appears to result from a widespread siRNA induction by the infected host, triggered by the virus. Symptomatic wood exhibited increased digestibility comparable to those seen in genetically engineered plants that alter lignin biosynthesis. To our knowledge this is the first example of a virus that alters lignin metabolism and offers a unique route to address the problem of the recalcitrant nature of plant biomass and a possible route to generating wood with altered mechanical properties.