Project description:Quorum sensing (QS) is a complex cell-cell communication mechanism that coordinates population-level behaviors in microbes. In eukaryotes, this phenomenon has been extensively described in the dimorphic yeast Candida albicans as its main QS molecule, the sesquiterpene alcohol farnesol, is responsible for various phenotypic (i.e., inhibition of yeast-to-hyphae transition, biofilm formation and, hence, pathogenesis) and metabolic (i.e., induction of oxidative stress and apoptosis) changes. Ophiostoma piceae CECT 20416 is a dimorphic saprotrophic ascomycete with biotechnological interest that also produces farnesol as a QS molecule, but in this case, the alcohol promotes the morphological transition to the mycelial form, biofilm formation, enzyme secretion, and melanin production. Here, we characterized the physiological response of Ophiostoma piceae to farnesol, and the molecular components of the QS system of this fungus have been investigated using a ‘multiomics’ approach that involved genomic, transcriptomic, and proteomic analyses. Some genes identified in this work are proposed as key factors in farnesol transport and signaling. We have also cataloged the genes undergoing major transcriptional changes triggered by the presence of the autoinducer, such as cell-wall remodeling, ROS protection, and melanin biosynthesis, using self-organizing maps (SOMs). This analysis could be useful for applications in the forestry industry, for enzyme production, and for the valorization of residues. Furthermore, it might as well help to investigate the QS mechanisms of clinically relevant fungi phylogenetically related to Ophiostoma.
Project description:The combined effects of NP and MBP were much more toxic than NP or MBP exposed alone. We used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up-regulated genes and miRNAs after treated with 0.1μM NP, 0.1mM MBP, 0.1μM NP+0.1mM MBP and solvent control.
Project description:2nd generation sequencing was used to compare expression profiles of MBP-specific T cells retrieved from blood, CSF, spinal cord meninges and parenchyma. The overall expression profiles were found to be very similar.However, genes regulated during T cell activation were found to be upregulated in T cells from spinal cord meninges and parenchyma compared to blood and CSF. 2nd generation sequencing of MBP-specific T cells retrieved from blood and CNS compartments during experimental autoimmune encephalomyelitis