Project description:In the present study we describe a new subset of murine T cells producing high levels of IL-10 that, in this case, are induced by C-type lectin receptor-stimulated (i.e., Dectin-1-stimulated) dendritic cells. This T cell produces IL-10 as a result of a transcriptional mechanism that is distinct from that inducing IL-10 in Th2 cells, Tr1 cells or other T cell subsets. In particular, the mechanism involves mTOR signaling and induction of the LIP isoform of C/EBPb, a factor that interacts with phospho-CREB and GATA3 to induce transactivation of the IL-10 gene. These T cells have strong regulatory properties in relation to fungal infection and hence have been termed Tr2 regulatory T cells to distinguish them from other regulatory T cell subsets.
Project description:IL-10 is a prototypical anti-inflammatory cytokine, which is fundamental to the maintenance of immune homeostasis, especially in the intestine. There is an assumption that cells producing IL-10 have an immunoregulatory function. However, here we report that IL-10-producing CD4+ T cells are phenotypically and functionally heterogeneous. By combining single cell transcriptome and functional analyses, we identified a subpopulation of IL-10-producing Foxp3Neg CD4+ T cells that displays regulatory activity unlike other IL-10-producing CD4+ T cells, which are unexpectedly pro-inflammatory. The combinatorial expression of co-inhibitory receptors is sufficient to discriminate IL-10-producing CD4+ T cells with regulatory function from others and to identify them across different tissues and disease models in mice and humans. These regulatory IL-10-producing Foxp3Neg CD4+ T cells have a unique transcriptional program, which goes beyond the regulation of IL-10 expression. Finally, we found that patients with Inflammatory Bowel Disease (IBD), demonstrate a deficiency in this specific regulatory T-cell subpopulation.
Project description:IL-10 is a prototypical anti-inflammatory cytokine, which is fundamental to the maintenance of immune homeostasis, especially in the intestine. There is an assumption that cells producing IL-10 have an immunoregulatory function. However, here we report that IL-10-producing CD4+ T cells are phenotypically and functionally heterogeneous. By combining single cell transcriptome and functional analyses, we identified a subpopulation of IL-10-producing Foxp3Neg CD4+ T cells that displays regulatory activity unlike other IL-10-producing CD4+ T cells, which are unexpectedly pro-inflammatory. The combinatorial expression of co-inhibitory receptors is sufficient to discriminate IL-10-producing CD4+ T cells with regulatory function from others and to identify them across different tissues and disease models in mice and humans. These regulatory IL-10-producing Foxp3Neg CD4+ T cells have a unique transcriptional program, which goes beyond the regulation of IL-10 expression. Finally, we found that patients with Inflammatory Bowel Disease (IBD), demonstrate a deficiency in this specific regulatory T-cell subpopulation.
Project description:IL-10 is a prototypical anti-inflammatory cytokine, which is fundamental to the maintenance of immune homeostasis, especially in the intestine. There is an assumption that cells producing IL-10 have an immunoregulatory function. However, here we report that IL-10-producing CD4+ T cells are phenotypically and functionally heterogeneous. By combining single cell transcriptome and functional analyses, we identified a subpopulation of IL-10-producing Foxp3Neg CD4+ T cells that displays regulatory activity unlike other IL-10-producing CD4+ T cells, which are unexpectedly pro-inflammatory. The combinatorial expression of co-inhibitory receptors is sufficient to discriminate IL-10-producing CD4+ T cells with regulatory function from others and to identify them across different tissues and disease models in mice and humans. These regulatory IL-10-producing Foxp3Neg CD4+ T cells have a unique transcriptional program, which goes beyond the regulation of IL-10 expression. Finally, we found that patients with Inflammatory Bowel Disease (IBD), demonstrate a deficiency in this specific regulatory T-cell subpopulation.
Project description:IL-10 is a prototypical anti-inflammatory cytokine, which is fundamental to the maintenance of immune homeostasis, especially in the intestine. There is an assumption that cells producing IL-10 have an immunoregulatory function. However, here we report that IL-10-producing CD4+ T cells are phenotypically and functionally heterogeneous. By combining single cell transcriptome and functional analyses, we identified a subpopulation of IL-10-producing Foxp3Neg CD4+ T cells that displays regulatory activity unlike other IL-10-producing CD4+ T cells, which are unexpectedly pro-inflammatory. The combinatorial expression of co-inhibitory receptors is sufficient to discriminate IL-10-producing CD4+ T cells with regulatory function from others and to identify them across different tissues and disease models in mice and humans. These regulatory IL-10-producing Foxp3Neg CD4+ T cells have a unique transcriptional program, which goes beyond the regulation of IL-10 expression. Finally, we found that patients with Inflammatory Bowel Disease (IBD), demonstrate a deficiency in this specific regulatory T-cell subpopulation.
Project description:Transcriptional repressor Prdm1/Blimp1 is known to play a key role in controlling B ells differentiation and regulating IL-10 production in regulatory T cells. B10 cells is the main IL-10 producing B cells in mouse spleen. We found that B10 cells and IL-10+ B cell levels are increased in Prdm1-deficient mice. Here, we compared the gene expression profiles of B10 cells from Prdm1-deficient mice (Cko) and its control littermate mice (Ctrl) in steady state and stimulated with anti-CD40 antibody for 48 h.
Project description:Metabolites are thought as the end products in cellular regulatory processes and their levels show the strongest relationships with the phenotype. Previously, we showed that the administration of Clostridium butyricum MIYAIRI 588 (CBM 588) upregulated protectin D1, an anti-inflammatory lipid metabolite, in colon tissue under antibiotic therapy. However, how CBM 588 induces protectin D1 expression and whether the metabolite has anti-inflammatory effects on antibiotic-induced inflammation are unclear. Therefore, here, we evaluated the effect of CBM 588 on lipid metabolism and protectin D1 in gut protection from antibiotic-induced intestinal disorders. In the CBM 588 treatment group, expression levels of genes encoding lipid receptors related to the conversion of DHA to protectin D1, such as polyunsaturated fatty acid (PUFA) receptors, G-protein coupled receptor 120 (GPR120), and 15-lipoxygenase (LOX), were increased in colon tissue. CD4+ cells producing interleukin (IL)-4, the main component of T helper type 2 (Th2) cells that can activate 15-LOX, also increased in CBM 588-treated groups even after clindamycin co-administration. In addition, similar to CBM 588, exogenously administered protectin D1 reduced inflammatory cytokines, while IL-10 and TGF-β1, works as anti-inflammatory cytokines, were increased. Our data revealed that CBM 588 activated 15-LOX to enhance protectin D1 production by increasing IL-4-producing CD4+ cell population in the intestinal tract. Additionally, CBM 588-induced protectin D1 clearly upregulated IL-10-producing CD4+ cells to control antibiotic-induced gut inflammation. We provide new insights into CBM 588-mediated lipid metabolism induction for the treatment of gut inflammatory diseases.
Project description:The ability of Treg-cells to produce interleukin-10 (IL-10) is important for the limitation of inflammation at environmental interfaces like colon or lung. Under steady state conditions, however, only few Treg-cells produce IL-10 ex vivo. To investigate the origin and fate of IL-10 producing Tregcells we used a superagonistic mouse anti-mouse CD28 mAb (CD28SA) for polyclonal in vivo stimulation of Treg-cells, which not only led to numeric expansion but also to a dramatic increase in IL- 10 production. IL-10 secreting Treg-cells strongly upregulated surface receptors associated with suppressive function, and had higher but IL-10 independent, in vitro suppressive capacity than nonproducing Treg-cells. Furthermore, polyclonally expanding Treg-cells shifted their migration receptor pattern after activation from a lymph node-seeking to an inflammation-seeking phenotype, explaining the preferential recruitment of IL-10 producers to sites of ongoing immune responses. Finally, we observed that IL-10 producing Treg-cells from CD28SA stimulated mice were more apoptosis-prone in vitro than their IL-10 negative counterparts. These findings support a model where prolonged activation of Treg-cells results in terminal differentiation towards an IL-10 producing effector phenotype associated with a limited lifespan, implicating built-in termination of immunosuppression.
Project description:During chronic viral infection, the inflammatory function of CD4 T cells becomes gradually attenuated. Concurrently, Th1 cells progressively acquire the capacity to secrete the cytokine IL-10, a potent suppressor of antiviral T cell responses. To determine the transcriptional changes that underlie this T cell adaption process, we applied a single-cell RNA-sequencing approach and assessed the heterogeneity of IL-10-expressing CD4 T cells during chronic infection. Unexpectedly, our analyses revealed an IL-10-producing population with a robust Tfh-signature. Using IL-10 and IL-21 double-reporter mice, we further demonstrate that IL-10+IL-21+co-producing Tfh cells arise predominantly during chronic but not acute LCMV infection. Importantly, depletion of IL-10+IL-21+co-producing CD4 T cells or deletion of Il10 specifically in Tfh cells resulted in impaired humoral immunity and viral control. Mechanistically, B cell-intrinsic IL-10 signaling was required for sustaining germinal center reactions. Lastly, we demonstrate that IL-27 and type I IFNs differentially regulate the formation of this protective IL-10-producing Tfh subset. Thus, our findings elucidate a critical role for Tfh-derived IL-10 in promoting humoral immunity during persistent viral infection.
Project description:During chronic viral infection, the inflammatory function of CD4 T cells becomes gradually attenuated. Concurrently, Th1 cells progressively acquire the capacity to secrete the cytokine IL-10, a potent suppressor of antiviral T cell responses. To determine the transcriptional changes that underlie this T cell adaption process, we applied a single-cell RNA-sequencing approach and assessed the heterogeneity of IL-10-expressing CD4 T cells during chronic infection. Unexpectedly, our analyses revealed an IL-10-producing population with a robust Tfh-signature. Using IL-10 and IL-21 double-reporter mice, we further demonstrate that IL-10+IL-21+co-producing Tfh cells arise predominantly during chronic but not acute LCMV infection. Importantly, depletion of IL-10+IL-21+co-producing CD4 T cells or deletion of Il10 specifically in Tfh cells resulted in impaired humoral immunity and viral control. Mechanistically, B cell-intrinsic IL-10 signaling was required for sustaining germinal center reactions. Lastly, we demonstrate that IL-27 and type I IFNs differentially regulate the formation of this protective IL-10-producing Tfh subset. Thus, our findings elucidate a critical role for Tfh-derived IL-10 in promoting humoral immunity during persistent viral infection.