Project description:Microbiota-induced cytokine responses participate in gut homeostasis, but the cytokine balance at steady-state and the role of individual bacterial species in setting the balance remain elusive. Using gnotobiotic mouse models, we provide a systematic analysis of the role of microbiota in the induction of cytokine responses in the normal intestine. Colonization by a whole mouse microbiota orchestrated a broad spectrum of pro-inflammatory (Th1, Th17) and regulatory T cell responses. Unexpectedly, most tested complex microbiota and individual bacteria failed to efficiently stimulate intestinal cytokine responses. A potent cytokine-inducing function was however associated with non-culturable host-specific species, the prototype of which was the Clostridia-related Segmented Filamentous Bacterium, and this bacterial species recapitulated the coordinated maturation of T cell responses induced by the whole mouse microbiota. Our study demonstrates the non-redundant role of microbiota members in the regulation of gut immune homeostasis.
Project description:Microbiota-induced cytokine responses participate in gut homeostasis, but the cytokine balance at steady-state and the role of individual bacterial species in setting the balance remain elusive. Using gnotobiotic mouse models, we provide a systematic analysis of the role of microbiota in the induction of cytokine responses in the normal intestine. Colonization by a whole mouse microbiota orchestrated a broad spectrum of pro-inflammatory (Th1, Th17) and regulatory T cell responses. Unexpectedly, most tested complex microbiota and individual bacteria failed to efficiently stimulate intestinal cytokine responses. A potent cytokine-inducing function was however associated with non-culturable host-specific species, the prototype of which was the Clostridia-related Segmented Filamentous Bacterium, and this bacterial species recapitulated the coordinated maturation of T cell responses induced by the whole mouse microbiota. Our study demonstrates the non-redundant role of microbiota members in the regulation of gut immune homeostasis. Germfree (GF) female 8-9-week-old mice were gavaged twice at a 24-hr interval with 0.5 mL of fresh anaerobic cultures of fecal homogenate from SFB mono-associated mice, fresh feces from Cv mice (Cvd) or from a healthy human donor (Hum). All mice were sacrificed on d8, 20 and 60 post-colonization in parallel to age-matched Cv and GF controls. RNA was extracted from ileal tissue, and processed to biotin-labelled cRNA, and then hybridized to the NuGO array (mouse) NuGO_Mm1a520177. Microarray analysis compared gene expression in ileum tissue of all the treatment groups GF, Cv, Cvd, Hum and SFB (N=3 per treatment group per time-point). Data was considered significant when P<0.05 using the Benjamini and Hochberg false discovery method.
Project description:Six bacterial genomes, Geobacter metallireducens GS-15, Chromohalobacter salexigens, Vibrio breoganii 1C-10, Bacillus cereus ATCC 10987, Campylobacter jejuni subsp. jejuni 81-176 and Campylobacter jejuni NCTC 11168, all of which had previously been sequenced using other platforms were re-sequenced using single-molecule, real-time (SMRT) sequencing specifically to analyze their methylomes. In every case a number of new N6-methyladenine (m6A) and N4-methylcytosine (m4C) methylation patterns were discovered and the DNA methyltransferases (MTases) responsible for those methylation patterns were assigned. In 15 cases it was possible to match MTase genes with MTase recognition sequences without further sub-cloning. Two Type I restriction systems required sub-cloning to differentiate their recognition sequences, while four MTases genes that were not expressed in the native organism were sub-cloned to test for viability and recognition sequences. No attempt was made to detect 5-methylcytosine (m5C) recognition motifs from the SMRT sequencing data because this modification produces weaker signals using current methods. However, all predicted m6A and m4C MTases were detected unambiguously. This study shows that the addition of SMRT sequencing to traditional sequencing approaches gives a wealth of useful functional information about a genome showing not only which MTase genes are active, but also revealing their recognition sequences. Examination of the methylomes of six different strains of bacteria using kinetic data from single-molecule, real-time (SMRT) sequencing on the PacBio RS.
Project description:The association between colorectal cancer (CRC) clinical variables and Fusobacterium, but not other intra-tumoral bacteria, has been extensively studied. Here we leveraged whole-transcriptome sequencing from 807 CRC tumor samples from the AVANT phase III trial to dually characterize tumor gene expression and intra-tumoral bacteria. After stringent filtering, 74 high-confidence taxa were identified. 17 of these species, including 4 Fusobacterium spp., were classified as orally-derived and had a robust signal within right-sided, MSI-H, and BRAF mutant tumors. Across consensus molecular subtypes (CMS), integration of Fusobacterium animalis presence and tumor gene expression revealed that F. animalis had the greatest number of associations in mesenchymal CMS4 tumors, despite an overall lower prevalence than in immune CMS1 tumors. Pathway analysis within CMS4 revealed that F. animalis, but not other highly prevalent species, was uniquely associated with pathways for collagen degradation and formation as well as IL-6 and IL-1 cytokine signaling. These associations could explain in part why Fusobacterium has been previously associated with reduced survival in mesenchymal populations. Overall, this study identified oral-derived bacteria, including Fusobacterium, as broadly more prevalent in inflamed CRC tumors compared to the other subtypes, and the association of intra-tumoral bacteria on tumor gene expression is context- and species-specific.