Project description:The role of the transcription factor EB (TFEB) in the control of cellular functions, including in vascular bed, is mostly thought to be the regulation of lysosomal biogenesis and autophagic flux. While this is its best-known function, we report here the ability of TFEB to orchestrate a non-canonical program involved in the control of cell-cycle and VEGFR2 pathway in the developing vasculature. In endothelial cells, TFEB deletion halts proliferation by inhibiting the CDK4/Rb pathway, which regulates the cell cycle G1-S transition. In an attempt to overcome this limit, cells compensate by increasing the amount of VEGFR2 on the plasma membrane through a microRNA-mediated mechanism and the control of its membrane trafficking. TFEB transactivates the miR-15a/16-1 cluster, which limits the stability of the VEGFR2 transcript, and negatively modulates the expression of MYO1C, which regulates VEGFR2 delivery to the cell surface. In TFEB knocked-down cells, the reduced and increased amount respectively of miR-15a/16-1 and MYO1C result in the overexpression on plasmamembrane of VEGFR2, which however shows low signaling strength. Using endothelial loss-of-function Tfeb mouse mutants, we present evidence of defects in fetal and newborn mouse vasculature caused by the reduced endothelial proliferation and by the anomalous function of VEGFR2 pathway. Thus, this study revealed a new and unreported function of TFEB that expands its role beyond the regulation of autophagic pathway in the vascular system.
Project description:The role of the transcription factor EB (TFEB) in the control of cellular functions, including in vascular bed, is mostly thought to be the regulation of lysosomal biogenesis and autophagic flux. While this is its best-known function, we report here the ability of TFEB to orchestrate a non-canonical program involved in the control of cell-cycle and VEGFR2 pathway in the developing vasculature. In endothelial cells, TFEB deletion halts proliferation by inhibiting the CDK4/Rb pathway, which regulates the cell cycle G1-S transition. In an attempt to overcome this limit, cells compensate by increasing the amount of VEGFR2 on the plasma membrane through a microRNA-mediated mechanism and the control of its membrane trafficking. TFEB transactivates the miR-15a/16-1 cluster, which limits the stability of the VEGFR2 transcript, and negatively modulates the expression of MYO1C, which regulates VEGFR2 delivery to the cell surface. In TFEB knocked-down cells, the reduced and increased amount respectively of miR-15a/16-1 and MYO1C result in the overexpression on plasmamembrane of VEGFR2, which however shows low signaling strength. Using endothelial loss-of-function Tfeb mouse mutants, we present evidence of defects in fetal and newborn mouse vasculature caused by the reduced endothelial proliferation and by the anomalous function of VEGFR2 pathway. Thus, this study revealed a new and unreported function of TFEB that expands its role beyond the regulation of autophagic pathway in the vascular system.
Project description:The role of the transcription factor EB (TFEB) in the control of cellular functions, including in vascular bed, is mostly thought to be the regulation of lysosomal biogenesis and autophagic flux. While this is its best-known function, we report here the ability of TFEB to orchestrate a non-canonical program involved in the control of cell-cycle and VEGFR2 pathway in the developing vasculature. In endothelial cells, TFEB deletion halts proliferation by inhibiting the CDK4/Rb pathway, which regulates the cell cycle G1-S transition. In an attempt to overcome this limit, cells compensate by increasing the amount of VEGFR2 on the plasma membrane through a microRNA-mediated mechanism and the control of its membrane trafficking. TFEB transactivates the miR-15a/16-1 cluster, which limits the stability of the VEGFR2 transcript, and negatively modulates the expression of MYO1C, which regulates VEGFR2 delivery to the cell surface. In TFEB knocked-down cells, the reduced and increased amount respectively of miR-15a/16-1 and MYO1C result in the overexpression on plasmamembrane of VEGFR2, which however shows low signaling strength. Using endothelial loss-of-function Tfeb mouse mutants, we present evidence of defects in fetal and newborn mouse vasculature caused by the reduced endothelial proliferation and by the anomalous function of VEGFR2 pathway. Thus, this study revealed a new and unreported function of TFEB that expands its role beyond the regulation of autophagic pathway in the vascular system.
Project description:Transcription factor TFEB is thought to control cellular functions-including in the vascular bed-primarily via regulation of lysosomal biogenesis and autophagic flux. Here, we report that TFEB also orchestrates a non-canonical program that controls the cell cycle/VEGFR2 pathway in the developing vasculature. In endothelial cells, TFEB depletion halts proliferation at the G1-S transition by inhibiting the CDK4/Rb pathway. TFEB-deficient cells attempt to compensate for this limitation by increasing VEGFR2 levels at the plasma membrane via microRNA-mediated mechanisms and controlled membrane trafficking. TFEB stimulates expression of the miR-15a/16-1 cluster, which limits VEGFR2 transcript stability and negatively modulates expression of MYO1C, a regulator of VEGFR2 trafficking to the cell surface. Altered levels of miR-15a/16-1 and MYO1C in TFEB-depleted cells cause increased expression of plasma membrane VEGFR2, but in a manner associated with low signaling strength. An endothelium-specific Tfeb-knockout mouse model displays defects in fetal and newborn mouse vasculature caused by reduced endothelial proliferation and by anomalous function of the VEGFR2 pathway. These previously unrecognized functions of TFEB expand its role beyond regulation of the autophagic pathway in the vascular system.
Project description:Transcription factor TFEB is thought to control cellular functions - including in the vascular bed - primarily via regulation of lysosomal biogenesis and autophagic flux. Here, we report that TFEB also orchestrates a non-canonical program that controls the cell-cycle/VEGFR2 pathway in the developing vasculature. In endothelial cells, TFEB depletion halts proliferation at the G1-S transition by inhibiting the CDK4/Rb pathway. TFEB-deficient cells attempt to compensate for this limitation by increasing VEGFR2 levels at the plasma membrane via microRNA-mediated mechanisms and controlled membrane trafficking. TFEB stimulates expression of the miR-15a/16-1 cluster, which limits VEGFR2 transcript stability and negatively modulates expression of MYO1C, a regulator of VEGFR2 trafficking to the cell surface. Altered levels of miR-15a/16-1 and MYO1C in TFEB-depleted cells cause increased expression of plasma-membrane VEGFR2, but in a manner associated with low signaling strength. An endothelium-specific Tfeb knockout mouse model displays defects in fetal and newborn mouse vasculature caused by reduced endothelial proliferation and by anomalous function of the VEGFR2 pathway. These previously unrecognized functions of TFEB expands its role beyond regulation of the autophagic pathway in the vascular system.
Project description:Transcription factro-EB (TFEB) is a master gene for autophagy and lysosome biogenesis We used microarrays to detail the gene expression in TFEB-overexpressing vascular smooth muscle cells identified distinct classes of TFEB-regulated genes.
Project description:LncRNA HIF1A-AS1 regulates the apoptosis and proliferation of vascular endothelial cells through globally regulating miRNAs expression
Project description:TFEB, a bHLH-leucine zipper transcription factor belonging to the MiT/TFE family, is a renowned global modulator of cell metabolism by regulating autophagy and lysosomal functions. Remarkably, loss of TFEB in mice causes embryonic lethality due to severe defects in placentation associated with aberrant vascularization and resulting hypoxia. However, the molecular mechanism underlying the described phenotype has yet to be elucidated. By integrating multi-omics approaches with functional assays, we uncover an unprecedented function for TFEB in promoting the formation of a functional syncytiotrophoblast in the placenta. Here, we showed that syncytiotrophoblast formation is marked by TFEB nuclear translocation and its association with the promoters of crucial placental genes, including fusogenic proteins (Syncytin-1 and Syncythin-2) and enzymes involved in the steroidogenic pathway, such as CYP19A1, the rate-limiting enzyme for the synthesis of 17β-Estradiol (E2). Conversely, the depletion of TFEB negatively impacts both the syncytial fusion and the endocrine properties of the syncytiotrophoblast, as demonstrated by a significant decrease in the secretion of placenta hormones and E2 production. Notably, the restoration of TFEB expression resets the syncytiotrophoblast identity. Finally, we identified reduced expression levels of TFEB and its target CYP19A1 in the placenta of pre-eclampsia women, suggesting that dysregulation of the TFEB-CYP19A1 axis might underlie the impairment of placental steroidogenesis described in pre-eclampsia. Our findings elect TFEB as a central controller of the metabolic properties of the placenta by orchestrating both the transcriptional program underlying trophoblast fusion and the acquisition of endocrine function, which are crucial for the bioenergetic requirements of embryonic development.