Project description:IRF4 is mainly expressed in immune cells, including B cell, T cell, macrophage and dendritic cell. Previous study showed that IRF4 plays important roles in regulating the differentiation and maturation of immune cells. Recently, our and other`s studies revealed that IRF4 involved in the pathogenesis of cardiac hypertrophy, cerebral ischemic reperfusion injury and metabolic disorder. However, the function of IRF4 in VSMC and neointima formation was largely unknown. We found that IRF4 expression was dramatically decreased in the VSMCs of mouse carotid artery. More importantly, using global IRF4 deficient mouse (KO), we demonstrated that IRF4 deficiency significantly increased VSMC proliferation, migration and neointima formation compared with wild type mice (WT) in response to injury. To evaluate the underlying mechanism by which IRF4 promotes VSMC proliferation and migration after vascular injury, IRF4 KO and WT mice were subjected to wire-injury and the carotid arteries were collected at 14 days post-injury. We combined 3-5 vessels for one sample, and 3 samples for each phenotype. Subsequently, a total of 400ng RNA was used following Affymetrix instruction and 10 ug of cRNA were hybridized for 16 hr at 45°. GeneChips were scanned using the Scanner 7G and the data was analyzed with Expression Console using Affymetrix default analysis settings and global scaling as normalization method. RMA analysis was employed to evaluate the gene expression. We used microarrays to detect the global gene expression in the carotid arteries of IRF4 knockout mice (IRF4 KO) compared with wild type mice (WT) at 14 days post-injury and identified distinct classes of altered genes
Project description:The whole rat genome microarray expression profiling of carotid artery specimen was emplyed to identify the gene expression profile before and after balloon injury. In our study, the neointimal formation of carotid arteries was apparent at day 7 and markedly increased at day 21 after balloon injury. In order to investigate the underlying mechanism of neointimal formationin in injured carotid arteries, all genes involved in signaling pathways whose expression was altered 2-fold in injured carotid arteries at day 7 and day 21 as compared to uninjured arteries were filtered out. Expression of four genes (TLR4, IRAK1, IM-NM-:BM-NM-1, IL-1M-NM-2) from TLR signaling pathway was quantified in the same RNA samples by quantitative real-time PCR, conforming that TLR signaling pathway participated in neointimal formation of carotid arteries after balloon injury. Balloon injury-induced gene expression in wistar rat was measured at day 7 and day 21 after balloon injury as compared with uninjured arteries. Two independent experiments were performed at each time (uninjured, day 7 or day 21) using different wistar rats for each experiment.
Project description:The whole rat genome microarray expression profiling of carotid artery specimen was emplyed to identify the gene expression profile before and after balloon injury. In our study, the neointimal formation of carotid arteries was apparent at day 7 and markedly increased at day 21 after balloon injury. In order to investigate the underlying mechanism of neointimal formationin in injured carotid arteries, all genes involved in signaling pathways whose expression was altered 2-fold in injured carotid arteries at day 7 and day 21 as compared to uninjured arteries were filtered out. Expression of four genes (TLR4, IRAK1, IκBα, IL-1β) from TLR signaling pathway was quantified in the same RNA samples by quantitative real-time PCR, conforming that TLR signaling pathway participated in neointimal formation of carotid arteries after balloon injury.
Project description:IRF9 is ubiquitously expressed and mediates the effects of IFNs, previous study showed that IRF9 played an important role in immunity and cell fate decision. Our recent study revealed that IRF9 involved in cardiac hypertrophy, hepatic steatosis and insulin resistance. However, the function of IRF9 in VSMC and neointima formation was largely unknown. We found that IRF9 expression was significantly increased in the VSMCs of mouse carotid artery. More importantly, we generated SMC-specific IRF9 overexpression transgenic mice (IRF9 TG) and found that IRF9 TG significantly increased VSMC proliferation, migration and neointima formation compared with NTG mice in response to injury. To evaluate the underlying mechanism by which IRF9 promotes VSMC proliferation and migration after vascular injury, IRF9 TG and NTG mice were subjected to wire-injury and the carotid arteries were collected at 14 days post-injury. We combined 3-5 vessels for one sample, and 3 samples for each phenotype. Subsequently, a total of 400ng RNA was used following Affymetrix instruction and 10 ug of cRNA were hybridized for 16 hr at 45°. GeneChips were scanned using the Scanner 7G and the data was analyzed with Expression Console using Affymetrix default analysis settings and global scaling as normalization method. RMA analysis was employed to evaluate the gene expression. We used microarrays to detect the global gene expression in the carotid arteries of smooth muscle cell specific IRF9 transgenic mice(IRF9 TG) compared with non transgenic control mice (NTG) at 14 days post-injury and identified distinct classes of altered genes. non-transgenic controls mice (NTG) and smooth muscle specific IRF9 transgenic mice (IRF9 TG) were subjected to wire-injury and the carotid ateries were collected at 14 days post-injury. We combine 3-5 vessels in one tube and for a single Affymetrix microarray. Total RNA was extracted and a total of 400ng RNA was used following Affymetrix instruction. 3 biological samples for each genotype.
Project description:Sympathetic neurons of SCG (Superior Cervical Ganglia) send axonal projections either along the external carotid arteries to innervate the salivary glands, or along the internal carotid arteries to the lacrimal and pineal glands, the eye, blood vessels and skin of the head, and the mucosa of the oral and nasal cavities. Previous studies using Wnt1Cre and R26R have defined the neural crest and mesodermal origins of vascular smooth muscle in the heart outflow tract and great vessels, although not specifically of the segments that are relevant for the projections of the SCG neurons. The third pharyngeal arch arteries are lined by neural crest-derived smooth muscle, and consequently, their derivatives, including the entirety of the external carotid arteries and only the base of the internal carotid arteries, also have a neural crest origin. In contrast, the dorsal aortae are lined by smooth muscle that is mesodermal in origin, and as a result, the internal carotid arteries from just above their origination from the common carotid arteries have a mesoderm-derived smooth muscle layer. To address the possibility that guidance cues for SCG neurons are selectively expressed by the external carotid vs. the internal carotid arteries, we isolated these segments of the vasculature from mouse embryos at E13.5 and extracted RNA to screen microarrays for differentially expressed genes. Keywords: differential expression in genes expressed in two different vascular segments.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:IRF9 is ubiquitously expressed and mediates the effects of IFNs, previous study showed that IRF9 played an important role in immunity and cell fate decision. Our recent study revealed that IRF9 involved in cardiac hypertrophy, hepatic steatosis and insulin resistance. However, the function of IRF9 in VSMC and neointima formation was largely unknown. We found that IRF9 expression was significantly increased in the VSMCs of mouse carotid artery. More importantly, we generated SMC-specific IRF9 overexpression transgenic mice (IRF9 TG) and found that IRF9 TG significantly increased VSMC proliferation, migration and neointima formation compared with NTG mice in response to injury. To evaluate the underlying mechanism by which IRF9 promotes VSMC proliferation and migration after vascular injury, IRF9 TG and NTG mice were subjected to wire-injury and the carotid arteries were collected at 14 days post-injury. We combined 3-5 vessels for one sample, and 3 samples for each phenotype. Subsequently, a total of 400ng RNA was used following Affymetrix instruction and 10 ug of cRNA were hybridized for 16 hr at 45°. GeneChips were scanned using the Scanner 7G and the data was analyzed with Expression Console using Affymetrix default analysis settings and global scaling as normalization method. RMA analysis was employed to evaluate the gene expression. We used microarrays to detect the global gene expression in the carotid arteries of smooth muscle cell specific IRF9 transgenic mice(IRF9 TG) compared with non transgenic control mice (NTG) at 14 days post-injury and identified distinct classes of altered genes.