Project description:Many pathogenic bacteria use a regulatory process termed Quorum Sensing (QS) to produce and detect small diffusible molecules to synchronize gene expression within a population. In Gram-negative bacteria, the detection and response to these molecules depend on transcriptional regulators belonging to the LuxR family. Such a system have been discovered in the intracellular pathogen Brucella melitensis, a Gram-negative bacteria responsible for brucellosis, a word-wide zoonosis remaining a serious public health concern in endemic countries. Two LuxR-type regulators, VjbR and BabR, have been identified in the genome of this pathogen. The vjbR mutant is highly attenuated in all tested models suggesting a crucial role of QS in the virulence of Brucella. This attenuation is at least due to the involvement of VjbR in the activation of the virB operon coding for a type four secretion system essential for Brucella to reach its intracellular replication compartment. At present, no function has been attributed to BabR. To assess the role of both Brucella QS-regulators, we performed in tandem comparative transcriptomic and proteomic analyses of vjbR and babR mutants. These experiments revealed that 10% of Brucella genome is regulated through those regulators, revealing that QS is a global regulatory system in this intracellular pathogen. The overlapping between BabR and VjbR targets suggest an unexpected cross-talk between these two regulators. Moreover, our results demonstrate that VjbR and BabR regulate many gene and/or proteins involved in stress response, metabolism and virulence. These targets are potentially involved in the adaptation of Brucella to the oxidative, pH and nutritional stresses encountered within the host. These findings highlight the involvement of QS in the virulence of Brucella and led us to suggest that this regulatory system could be implied in the spatial and sequential adaptation of Brucella to the host environment. Keywords: Quorum Sensing, Comparative gene expression, Brucella melitensis
Project description:Investigation of whole genome gene expression level changes in a Brucella melitensis delta prlr mutant compared to the wild type strain. The mutants analyzed in this study are further described in A. Mirabella, R-M Yanez, R.M. Delrue, S. Uzureau, M.S. Zygmunt, A. Cloeckaert, X. De Bolle, J.J. Letesson (2012). The two component system PrlS/PrlR of Brucella melitensis is required for persistence in mice and appears to respond to ionic strength. Microbiology
Project description:Investigation of whole genome gene expression level changes in a Brucella melitensis delta prlr mutant compared to the wild type strain. The mutants analyzed in this study are further described in A. Mirabella, R-M Yanez, R.M. Delrue, S. Uzureau, M.S. Zygmunt, A. Cloeckaert, X. De Bolle, J.J. Letesson (2012). The two component system PrlS/PrlR of Brucella melitensis is required for persistence in mice and appears to respond to ionic strength. Microbiology A six chip study using total RNA recovered from three separate wild-type cultures of Brucella melitensis 16M and three separate cultures of a prlR mutant strain. Each chip measures the expression level of 3,198 genes from Brucella melitensis 16M with nineteen 60 mer probe pairs (PM/MM) per gene, with three-fold technical redundancy.
Project description:Brucella spp. is an intracellular pathogen in vivo. The intracellular B. melitensis transcriptome was determined by initially enriched and then amplified B. melitensis RNA from total RNA of B. melitensis-infected HeLa cells. Analysis of microarray results identified 161 and 115 genes differentially expressed at 4 and 12 h p.i., respectively. Most of the genes (78%) differentially expressed were down-regulated at the earliest time point, but up-regulated (75%) at 12 h p.i. The analysis of the results indicates that Brucella undergo an adaptation period during the first 4 h p.i. that is overcome by 12 h p.i., permitting Brucella to replicate intracellularly. Specific genes and biological processes identified in this study will further help elucidate how Brucella act during the early infectious process to their eventual benefit and to the detriment of the naïve host. Keywords: Time course study of intracellular B. melitensis gene expression
Project description:Brucella spp. is an intracellular pathogen in vivo. The intracellular B. melitensis transcriptome was determined by initially enriched and then amplified B. melitensis RNA from total RNA of B. melitensis-infected HeLa cells. Analysis of microarray results identified 161 and 115 genes differentially expressed at 4 and 12 h p.i., respectively. Most of the genes (78%) differentially expressed were down-regulated at the earliest time point, but up-regulated (75%) at 12 h p.i. The analysis of the results indicates that Brucella undergo an adaptation period during the first 4 h p.i. that is overcome by 12 h p.i., permitting Brucella to replicate intracellularly. Specific genes and biological processes identified in this study will further help elucidate how Brucella act during the early infectious process to their eventual benefit and to the detriment of the naM-CM-/ve host. Keywords: Time course study of intracellular B. melitensis gene expression Gene expression of the intracellular Brucella melitensis was determined at 4 and 12 h p.i. We generated the following samples: A) B. melitensis total RNA enriched and amplified from total RNA of B. melitensis-infected HeLa cells at 4 h p.i.; B) Total RNA isolated from B. melitensis-infected HeLa cells at 4 h p.i.; C) B. melitensis total RNA enriched and amplified from total RNA of B. melitensis-infected HeLa cells at 12 h p.i.; D) Total RNA isolated from B. melitensis-infected HeLa cells at 12 h p.i. B. melitensis total RNA was initially enriched and then amplified from total RNA of B. melitensis-infected HeLa cells at 4 and 12 h p.i. in quadruplicate, indirectly labeled and co-hybridized against B. melitensis gDNA to a custom 3.2K B. melitensis oligo-array (n = 8). As there was a possibility that some HeLa transcripts cross-hybridize with probes on B. melitensis microarrays, the original total RNA from B. melitensis-infected HeLa cells were also co-hybridized against B. melitensis gDNA to B. melitensis oligo-arrays (n = 8), and any oligospots with signals were considered non-specific and eliminated from all analysis to avoid false positive gene detection. The intracellular B. melitensis gene expression was compared to the gene expression of the inoculum (n = 2). Every Brucella melitensis open reading frame was printed in triplicate on each microarray, thereby providing three technical replicates for each biological replicates. Each replicate was normalized against labeled Brucella melitensis genomic DNA.
Project description:We sequenced the mRNA of Brucella melitensis 16M and otpR mutant under acid stress to identify genes that were regulated by regulator OtpR.
Project description:Brucella dynamically engage macrophages while trafficking to an intracellular replicative niche as macrophages, the first line of innate host defense, attempt to eliminate organisms. Brucella melitensis, B. neotomae, and B. ovis are highly homologous, yet exhibit a range of host pathogenicity and specificity. RAW 264.7 macrophages infected with B. melitensis, and B. ovis exhibit divergent patterns of bacterial persistence and clearance; conversely, B. melitensis and B. neotomae exhibit similar patterns of infection. Evaluating early macrophage interaction with Brucella spp. allows discovery of host entry and intracellular translocation mechanisms, rather than bacterial replication. Microarray analysis of macrophage transcript levels following a 4 hr Brucella spp. infection revealed 130 probe sets altered compared to uninfected macrophages; specifically, 72 probe sets were increased and 58 probe sets were decreased with any Brucella spp. Interestingly, much of the inflammatory response was not regulated by the number of Brucella gaining intracellular entry, as macrophage transcript levels were often equivalent among B. melitensis, B. ovis, and B. neotomae infections. An additional 33 probe sets were identified with altered macrophage transcript levels among Brucella spp. infections that may correlate with species specific host defenses and intracellular survival. Gene ontological categorization unveiled genes altered among species are involved in cell growth and maintenance, response to external stimuli, transcription regulation, transporter activity, endopeptidase inhibitor activity and G-protein mediated signaling. Host transcript profiles provide a foundation to understand variations in Brucella spp. infections, while structure of the macrophage response and intracellular niche of Brucella spp. will be revealed through piecewise consideration of host signaling pathways. Keywords: Macrophage, intracellular pathogen, Brucella melitensis, Brucella neotomae, Brucella ovis, inflammatory immune response, species specificity
Project description:Brucellosis is a zoonosis of the Mediterranean and Middle-East regions linked to important economic losses and reduced animal welfare. To date, no effective diagnostic and/or prophylactic measures are available for the control of brucellosis, due to the residual virulence of the bacterial strain administered for vaccinal purposes and the difficulties in distinguishing vaccinated from infected animals. To overcome these issues, studies are desired to elucidate the bacterial biology and the pathogenetic mechanisms of both the vaccinal strain and the pathogenic strains. Here, we employed a label-free shotgun proteomics to investigate the protein repertoire of the vaccinal strain B. melitensis Rev.1 and compare it with the proteome of the Brucella melitensis 16 M, one of the most common field strains isolated from ruminants. Comparative proteomics profiling underlines common and diverging traits between the two strains, providing suggestions on the potential biochemical routes responsible of the residual virulence of the vaccinal strain; whilst the diverging traits are suggestive biochemical signatures to be further investigated to provide an optimized diagnostics capable of discriminating the vaccinated from infected animals.