Project description:We compared the proteomic profile of blood plasma in healthy and white-nose syndrome affected Myotis lucifugus in order to identify patho-physiological changes associated with the disease. Using two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry we identified differentially expressed proteins for acute phase response, constitutive and adaptive immunity, oxidative stress defense, metabolism and structural proteins of exosomes and desmosomes, suggesting a systemic response against Pseudogymnoascus destructans infection in a North American bat species.
Project description:This dataset is provided in support of the identification of a collagen-degrading enzyme secreted by the fungus P. destructans. P. destructans is responsible for the disease white nose syndrome, which has infected and killed millions of North American bats. Our manuscript, titled "Destructin-1 is a Collagen-Degrading Endopeptidase Secreted by P. destructans, the Causative Agent of White-Nose Syndrome", is under review, and the data set will be released upon acceptance.
Project description:Bats are a major reservoir of zoonotic viruses, and there has been growing interest in characterizing bat-specific features of innate immunity and inflammation. Recent studies have revealed bat-specific adaptations affecting interferon (IFN) signaling and IFN-stimulated genes (ISGs), but we still have a limited understanding of the genetic mechanisms that have shaped the evolution of bat immunity. Here we investigated the transcriptional and epigenetic dynamics of transposable elements (TEs) during the type I IFN response in little brown bat (Myotis lucifugus) primary embryonic fibroblast cells, using RNA-seq and CUT&RUN. We found multiple bat-specific TEs that undergo both locus-specific and family-level transcriptional upregulation in response to IFN. Our transcriptome reassembly identified multiple ISGs that have acquired novel exons from bat-specific TEs, including NRLC5, SLNF5 and a previously unannotated isoform of the IFITM2 gene. We also identified examples of TE-derived regulatory elements, but did not find strong evidence supporting genome-wide epigenetic activation of TEs in response to IFN. Collectively, our study uncovers numerous TE-derived transcripts, proteins, and alternative isoforms that are induced by IFN in Myotis lucifugus cells, highlighting potential candidate loci that contribute to bat-specific immune function.