Project description:Zymomonas mobilis ATCC 10988 is the type strain of the Z. mobilis subsp. mobilis taxon, members of which are some of the most rigorous ethanol-producing bacteria. Isolated from Agave cactus fermentations in Mexico, ATCC 10988 is one of the first Z. mobilis strains to be described and studied. Its robustness in sucrose-substrate fermentations, physiological characteristics, large number of plasmids, and overall genomic plasticity render this strain important to the study of the species. Here we report the finishing and annotation of the ATCC 10988 chromosomal and plasmid genome.
Project description:Zymomonas mobilis is an ethanologenic bacterium that has been studied for use in biofuel production. Of the sequenced Zymomonas strains, ATCC 29191 has been described as the phenotypic centrotype of Zymomonas mobilis subsp. mobilis, the taxon that harbors the highest ethanol-producing Z. mobilis strains. ATCC 29191 was isolated in Kinshasa, Congo, from palm wine fermentations. This strain is reported to be a robust levan producer, while in recent years it has been employed in studies addressing Z. mobilis respiration. Here we announce the finishing and annotation of the ATCC 29191 genome, which comprises one chromosome and three plasmids.
Project description:Zymomonas mobilis is an alphaproteobacterium studied for bioethanol production. Different strains of this organism have been hitherto sequenced; they all belong to the Z. mobilis subsp. mobilis taxon. Here we report the finished and annotated genome sequence of strain ATCC 29192, a cider-spoiling agent isolated in the United Kingdom. ATCC 29192 is the lectotype of the second-best-characterized subspecies of Z. mobilis, Z. mobilis subsp. pomaceae. The nucleotide sequence of ATCC 29192 deviates from that of Z. mobilis subsp. mobilis representatives, which justifies its distinct taxonomic positioning and proves particularly useful for comparative and functional genomic analyses.
Project description:Zymomonas mobilis subsp. mobilis is an efficient ethanol producer with application for industrial production of biofuel. To supplement existing Z. mobilis genomic resources and to facilitate genomic research, we used Oxford Nanopore and Illumina sequencing to assemble the complete genome of the beer spoilage isolate Z. mobilis subsp. mobilis strain NRRL B-1960.
Project description:Zymomonas mobilis subsp. mobilis is one of the most rigorous ethanol-producing organisms known to date, considered by many to be the prokaryotic alternative to yeast. The two most applied Z. mobilis subsp. mobilis strains, ZM4 and CP4, derive from Recife, Brazil, and have been isolated from sugarcane fermentations. Of these, ZM4 was the first Z. mobilis representative strain to be sequenced and analyzed. Here, we report the finishing of the genome sequence of strain CP4, which is highly similar but not identical to that of ZM4.
Project description:We report the genome changes associated with a Zymomonas mobilis sodium acetate-tolerant mutant (AcR). We used comparative genomics, transcriptomics, and genetics to show nhaA over-expression conferred sodium acetate (NaAc) tolerance in Z. mobilis. We observed a synergistic effect for sodium and acetate ions that enhanced toxicity against the wild-type strain (ZM4), which was not observed for similar concentrations of potassium and ammonium acetate under controlled laboratory conditions. We extended our studies and demonstrated that Saccharomyces cerevisiae sodium-proton antiporter genes contribute to NaAc tolerance for this important ethanologen. The application of classical and systems biology tools is a paradigm for industrial strain improvement and combines benefits of few a priori assumptions with detailed, rapid, mechanistic studies. Finally, our studies reinforce the idea that one obtains what one selects for in mutant screens and that a genetic system is important for industrial strain development.