Project description:Progressive β–cell failure and apoptosis, resultant of innate immune system activation1,2 is gaining traction as a converging point for type 1 (T1D) and type 2 (T2D). Islet inflammation (insulitis), a hallmark of T1D, occurs typically during the initiation phase of the disease, subsequently orchestrating an autoimmune assault against β–cells. Whether this is a primary event or a consequence of glucotoxicity or lipotoxicity is undetermined3 but metabolic stress is demonstrated to prompt islet inflammation1,2. Here we show that paternal consumption of high fat diet (HFD) invoked distinct immuno-inflammatory transcriptional response in the pancreatic islets of their weanling daughters, in contrast to compensatory changes in the sons. Importantly, these changes occurred in conjunction with transition in islet repertoire resembling the spectrum of T2D, along with progressive development of β–cell dysfunction4. Note, these females were lean, normolipidaemic and insulin sensitive4. These findings provide experimental support for the notion that islet inflammation could be an antecedent event in T2D, leading to β–cell secretory defect, repair/regeneration and apoptosis. Importantly, these effects were transmitted via paternal nutrient stress to offspring.
Project description:In the present study, we designed a 7-week rat model, consuming high-fat diet or heat-misture-treated high fat diet. The liver was used for microarray analyses. Transcriptome profiling reveal that high-fat diet with or with out heat-moisture treatment induced different transcriptome changes, mainly on lipid metabolism and inflammation.
Project description:The global prevalence of obesity is increasing across age and gender. The rising burden of obesity in young people contributes to the early emergence of type 2 diabetes. Having one parent obese is an independent risk factor for childhood obesity. While the detrimental impact of diet-induced maternal obesity on offspring is well established, the extent of the contribution of obese fathers is unclear, as is the role of non-genetic factors in the casual pathway. Here we show that paternal high fat diet exposure programmed β-cell ‘dysfunction’ in their F1 female offspring. Chronic high fat diet consumption in Sprague Dawley fathers led to increased body weight, adiposity, impaired glucose tolerance and insulin sensitivity. Relative to controls, their female offspring had lower body weight at day-1, increased pubertal growth rate, impaired insulin secretion and glucose tolerance, in the absence of obesity or increased adiposity. Paternal high fat diet was observed to alter gene expression of pancreatic islet genes in adult female offspring (P < 0.001); affected functional clusters includes calcium ion binding, insulin, apoptosis, Wnt and cell cycle organ/system development. This is the first reported study in mammals describing non-genetic, intergenerational transmission of metabolic sequelae of high fat diet from father to offspring. These findings support a role of fathers in metabolic programming of offspring and form a framework for further studies.
Project description:The global prevalence of obesity is increasing across age and gender. The rising burden of obesity in young people contributes to the early emergence of type 2 diabetes. Having one parent obese is an independent risk factor for childhood obesity. While the detrimental impact of diet-induced maternal obesity on offspring is well established, the extent of the contribution of obese fathers is unclear, as is the role of non-genetic factors in the casual pathway. Here we show that paternal high fat diet exposure programmed β-cell ‘dysfunction’ in their F1 female offspring. Chronic high fat diet consumption in Sprague Dawley fathers led to increased body weight, adiposity, impaired glucose tolerance and insulin sensitivity. Relative to controls, their female offspring had lower body weight at day-1, increased pubertal growth rate, impaired insulin secretion and glucose tolerance, in the absence of obesity or increased adiposity. Paternal high fat diet altered the expression of 211 pancreatic islet genes in adult female offspring (P < 0.001); genes belonged to 8 functional clusters, including calcium ion binding, primary metabolic processes and ATP binding, and organ/system development. Broader KEGG pathway analysis of 2014 genes differentially expressed at the P < 0.01 level further demonstrated involvement of insulin and calcium signaling, and MAPK pathways. This is the first reported study in mammals describing non-genetic, intergenerational transmission of metabolic sequelae of high fat diet from father to offspring. These findings support a role of fathers in metabolic programming of offspring and form a framework for further studies.
Project description:The global prevalence of obesity is increasing across age and gender. The rising burden of obesity in young people contributes to the early emergence of type 2 diabetes. Having one parent obese is an independent risk factor for childhood obesity. While the detrimental impact of diet-induced maternal obesity on offspring is well established, the extent of the contribution of obese fathers is unclear, as is the role of non-genetic factors in the casual pathway. Here we show that paternal high fat diet exposure programmed β-cell ‘dysfunction’ in their F1 female offspring. Chronic high fat diet consumption in Sprague Dawley fathers led to increased body weight, adiposity, impaired glucose tolerance and insulin sensitivity. Relative to controls, their female offspring had lower body weight at day-1, increased pubertal growth rate, impaired insulin secretion and glucose tolerance, in the absence of obesity or increased adiposity. Paternal high fat diet altered the expression of 211 pancreatic islet genes in adult female offspring (P < 0.001); genes belonged to 8 functional clusters, including calcium ion binding, primary metabolic processes and ATP binding, and organ/system development. Broader KEGG pathway analysis of 2014 genes differentially expressed at the P < 0.01 level further demonstrated involvement of insulin and calcium signaling, and MAPK pathways. This is the first reported study in mammals describing non-genetic, intergenerational transmission of metabolic sequelae of high fat diet from father to offspring. These findings support a role of fathers in metabolic programming of offspring and form a framework for further studies.
Project description:The global prevalence of obesity is increasing across age and gender. The rising burden of obesity in young people contributes to the early emergence of type 2 diabetes. Having one parent obese is an independent risk factor for childhood obesity. While the detrimental impact of diet-induced maternal obesity on offspring is well established, the extent of the contribution of obese fathers is unclear, as is the role of non-genetic factors in the casual pathway. Here we show that paternal high fat diet exposure programmed β-cell ‘dysfunction’ in their F1 female offspring. Chronic high fat diet consumption in Sprague Dawley fathers led to increased body weight, adiposity, impaired glucose tolerance and insulin sensitivity. Relative to controls, their female offspring had lower body weight at day-1, increased pubertal growth rate, impaired insulin secretion and glucose tolerance, in the absence of obesity or increased adiposity. Paternal high fat diet altered the expression of 211 pancreatic islet genes in adult female offspring (P < 0.001); genes belonged to 8 functional clusters, including calcium ion binding, primary metabolic processes and ATP binding, and organ/system development. Broader KEGG pathway analysis of 2014 genes differentially expressed at the P < 0.01 level further demonstrated involvement of insulin and calcium signaling, and MAPK pathways. This is the first reported study in mammals describing non-genetic, intergenerational transmission of metabolic sequelae of high fat diet from father to offspring. These findings support a role of fathers in metabolic programming of offspring and form a framework for further studies.
Project description:The global prevalence of obesity is increasing across age and gender. The rising burden of obesity in young people contributes to the early emergence of type 2 diabetes. Having one parent obese is an independent risk factor for childhood obesity. While the detrimental impact of diet-induced maternal obesity on offspring is well established, the extent of the contribution of obese fathers is unclear, as is the role of non-genetic factors in the casual pathway. Here we show that paternal high fat diet exposure programmed β-cell âdysfunctionâ in their F1 female offspring. Chronic high fat diet consumption in Sprague Dawley fathers led to increased body weight, adiposity, impaired glucose tolerance and insulin sensitivity. Relative to controls, their female offspring had lower body weight at day-1, increased pubertal growth rate, impaired insulin secretion and glucose tolerance, in the absence of obesity or increased adiposity. Paternal high fat diet was observed to alter gene expression of pancreatic islet genes in adult female offspring (P < 0.001); affected functional clusters includes calcium ion binding, insulin, apoptosis, Wnt and cell cycle organ/system development. This is the first reported study in mammals describing non-genetic, intergenerational transmission of metabolic sequelae of high fat diet from father to offspring. These findings support a role of fathers in metabolic programming of offspring and form a framework for further studies. F0 founders were male Sprague Dawley rats, divided into two groups, high fat (HF) and control. The HF fathers were given commercially prepared high-fat pellets (43% as fat); while the controls ate standard laboratory chow (9% as fat). The two groups of fathers had distinct phenotype; the HF fathers were significantly heavier with increased adiposity, they were also glucose intolerant and insulin resistant. At 15 weeks of age, fathers were mated with normal females consuming chow, to generate the F1 offspring. Only female offspring were studied. Female offspring were weaned unto standard laboratory chow at 3 weeks. At 6 and 12 weeks, intraperitoneal glucose tolerance test (IpGTT) was performed to measure blood glucose and insulin profile; at 11 weeks, intraperitoneal insulin tolerance test was done. The body weight and adiposity of these offspring were not different between the two groups. The HF offspring had glucose intolerance and impaired glucose-induced insulin response, mainly at the acute phase, observed since 6 weeks. The IpITT was not different between groups. At 13 weeks, islets were harvested from the two groups of offspring.
Project description:Gene expression for genes differentially expressed between early vs. late tumor onset and high fat diet (HFD) vs. low fat diet (LFD) in P53 -/- mice. 4 HFD early tumor onset, 7 HFD late tumor onset, 4 HFD to LFD switch with early tumor onset, 6 HFD to LFD switch with late tumor onset, 4 LFD early tumor onset, 7 LFD late tumor onset, 5 LFD to HFD switch with early tumor onset, 4 LFD to HFD switch with late tumor onset
Project description:Gene expression for genes differentially expressed between early vs. late tumor onset and high fat diet (HFD) vs. low fat diet (LFD) in mice.
Project description:Gene expression for genes differentially expressed between early vs. late tumor onset and high fat diet (HFD) vs. low fat diet (LFD) in P53 -/- mice.